Back to top
Top
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

FHIR® - Fast Healthcare Interoperability Resources®

Fast Healthcare Interoperability Resources (FHIR) is a Health Level Seven International® (HL7®) standard for exchanging health care information electronically. The health care community is adopting this next generation exchange framework to advance interoperability. Electronic health records (EHRs) represent patient data in different ways (e.g., medications, encounters) and FHIR provides a means for representing and sharing information among clinicians and organizations in a standard way regardless of the ways local EHRs represent or store the data. FHIR combines the best features of previous standards into a common specification, while being flexible enough to meet the needs of a wide variety of use cases within the health care ecosystem. FHIR focuses on implementation and uses the latest web technologies to aid rapid adoption. ecqm flows

FHIR Quality Measurement

The health care community and CMS are exploring a potential transition to FHIR-based quality measurement beginning with research and testing. Currently used quality standards, Quality Data Model (QDM), Clinical Quality Language (CQL), Health Quality Measure Format (HQMF), and Quality Reporting Document Architecture (QRDA), remain the backbone of electronic clinical quality measure (eCQM) development and reporting. However, the FHIR standard has potential to better align with the EHR's ability to share data in clinical settings, to improve alignment with clinical decision support initiatives, and to reduce overall burden on measure developers and implementers.  

In order to assess the transition to FHIR quality measurement, it is important to understand the components of an eCQM and how the components will evolve with FHIR. As shown in the graphic, an eCQM is composed of three primary parts, the data model, expression logic, and structure.

eCQM structure graphic showing the data model, expression logic, and structure.

  • Data Model: How to describe the patient’s medical record data needed to calculate the measure
  • Expression Logic: How to calculate the result and evaluate the performance
  • Structure: The container and sections describing measure metadata, numerator, denominator, exclusions, exceptions

The left side of the graphic shows the current state and the right side of the graphic shows the potential future state if CMS adopts FHIR for eCQMs.

Graphic shows current eCQM standards and potential new standards

A FHIR eCQM uses the FHIR Quality Measure Implementation Guide and the Data Exchange for Quality Measures (DEQM) Implementation Guide. The goal is to align quality measurement standards for eCQM development and reporting:

FHIR

FHIR is composed of foundational, infrastructure, administrative, data exchange, and clinical reasoning capabilities. The Clinical Reasoning Module includes a collection of resources, extensions, and profiles to use the clinical knowledge artifacts such as clinical decision support rules, clinical quality measurement and reporting, order sets, and other capabilities to reason about the health care process prospectively and retrospectively. This module enables use of the same requests for information to improve care at the time of service (clinical decision support) and to evaluate care after it occurs (quality measurement), a vast improvement over previous care improvement standards.

FHIR Resources

Resources are the basis for all exchangeable FHIR content. Each resource includes a standard definition and human-readable descriptions about how to use the resource. Each resource also has a set of common and resource-specific metadata (attributes) to allow its use clearly and unambiguously. FHIR Resources can store and/or exchange many types of clinical and administrative data, which is the foundation for the data model used in quality measurement.

FHIR Profiles and Implementation Guides

profile is a FHIR Resource that has been changed to meet the needs of a specific use case. For example, a measure developer may use the FHIR Observation resource to indicate anything observed about a patient. To indicate vital signs, there is a requirement for a vital signs profile, which provides greater structure by listing specific data (e.g., blood pressure, respiratory rate) along with appropriate coding for the specific data element(s). Using the vital signs profile in EHRs avoids variation and makes data sharing easier.

The FHIR community often assembles multiple easily consumable profiles into implementation guides (IGs). As an example, QI-Core is an IG containing profiles for representing the clinical data in an eCQM.

Exchange Specifications

The exchange specification defines how to exchange and manage resources in the form of real-time Representational State Transfer (RESTful) application programming interfaces (APIs) and messaging and documents. RESTful APIs allow for the exchange of FHIR resources using HTTP requests. The exchange specifications provide the foundation for reporting of eCQMs using FHIR. 

Implementation Guides for Quality Measurement

For the purposes of investigating a transition to FHIR-based quality measurement, CMS is collaborating with HL7 to advance emerging standards and develop additional FHIR profiles for both eCQM development and reporting.

 Data ModelQuality MeasuresMeasure Reporting
Base ResourceUS Core*Measure ResourceMeasure Report
Implementation GuideQI-CoreFHIR Quality Measure Implementation GuideDEQM

*US Core is an implementation guide representing FHIR for the US Realm

Benefits of FHIR

  • Provides faster, real-time access to quality data
  • Reduces burden for reporting quality measures
    • Aligns CMS eCQM reporting with industry clinical data exchange framework, reducing implementation burden
    • Enables automated data retrieval from EHRs and submissions of quality data through use of standards-based APIs
  • Promotes interoperability
    • Aligns data exchange requirements for quality measurement and reporting with interoperability standards used in other health care exchange methods
    • Allows for additional quality data exchange methods
  • Reduces effort to implement new measures
    • Simplifies data mapping to a single FHIR mapping vs. mapping to HQMF and QRDA
  • Improves alignment between eCQMs and clinical decision support
    • Both use a common FHIR data model (FHIR QI-Core)

Disclaimer

FHIR® is the registered trademark of HL7 and is used with the permission of HL7. Use of the FHIR trademark does not constitute endorsement of the contents of this repository by HL7, nor affirmation this data is conformant to the various applicable standards.

General Resources

Health Level Seven International® (HL7®) has many Fast Healthcare Interoperability Resources (FHIR) resources on the HL7 website including a FHIR overview

The Office of the National Coordinator for Health IT (ONC) has created several FHIR Fact Sheets.

eCQM Related Tools for Use and Evaluation

FHIR Specifications and Implementation Guides

FHIR Testing Tools

  • ClinFHIR: An open source tool that provides an educational environment and also allows developers to create or search for FHIR-based resources. It serves as a training tool to help people wanting to learn more about FHIR visualize how the parts combine to represent clinical information in a structured and coded manner. It also serves as a development tool with features to build some of the required artifacts, particularly as an aid to learning.
  • FHIR Servers - Public Sites for Testing: HL7 provides a list of FHIR servers publicly available for testing. These are public services provided by volunteers and HL7 makes no representations concerning their safety or reliability.
  • Postman: A collaboration platform for API development. Postman's features simplify each step of building an API and streamline collaboration so you can create better APIs—faster. The current use of Postman is for testing of FHIR-based eCQMs during HL7 Connectathons and provides a simple method for posting requests and updates to FHIR servers.
  • CQL Runner: An online platform for ad hoc testing of CQL.
  • Inferno: A rich and rigorous testing suite for HL7 FHIR to help developers implement the FHIR standard consistently. Two options are available for developers wanting to use Inferno. Use of the Inferno Program Edition is to help test requirements of the Standardized API for Patient and Population Services criterion § 170.315(g)(10) in the 2015 Edition Cures Update. The Inferno Community Edition contains a community-curated set of tests and tools for select FHIR Implementation Guides.
  • Crucible: A suite of open source testing tools for FHIR provided to the FHIR development community to help promote correct FHIR implementations. It currently can test for conformance to the FHIR standard, score patient records for completeness, and generate synthetic patient data.

Test Data Tools

  • SyntheaTM: An open-source, synthetic patient generator that models the medical history of synthetic patients. It provides realistic, but not real, patient data and associated health records covering every aspect of health care. The resulting data is free from cost, privacy, and security restrictions, enabling research with health information technology data that is otherwise legally or practically unavailable.
  • HL7 Downloads: HL7 webpage that contains examples, reference implementations, and other useful resources.

Introduction to Fast Healthcare Interoperability Resources® (FHIR®)

Introduction to FHIR and eCQMs

FHIR for eCQM Developers and Implementers

  • FHIR based eCQMs: Human Readable Output - CMS Quality Bi-Monthly Forum Slides / YouTube - June 20, 2023
  • eCQM FHIR Sparks Video Series (best viewed in order presented)
    • What is FHIR? (YouTube) - YouTube Video Short - January 2022
    • Anatomy of eCQMs in FHIR YouTube Video Short - January 2022
    • Writing Measures in QI-Core: A Closer Look YouTube Video Short - February 2022
    • Representing Encounters in QI-Core YouTube Video Short - April 2022
    • Introducing the Quality Measure Implementation Guide YouTube Video Short - April 2022
  • Authoring eCQMs Using the FHIR Standard Slides / YouTube / Q&As - April 15, 2021
Last Updated: Feb 20, 2024