Title |
Excessive Radiation Dose or Inadequate Image Quality for Diagnostic Computed Tomography (CT) in Adults (Facility OQR)
|
Excessive Radiation Dose or Inadequate Image Quality for Diagnostic Computed Tomography (CT) in Adults (Facility OQR)
|
CMS eCQM ID |
CMS1206v2
|
CMS1206v3
|
CBE ID* |
3663e
|
3663e
|
Measure Steward |
Alara Imaging, Inc.
|
Alara Imaging, Inc.
|
Description |
This measure is an episode of care measure that provides a standardized method for monitoring the performance of diagnostic CT to discourage unnecessarily high radiation doses, a risk factor for cancer, while preserving image quality. This measure is expressed as a percentage of CT exams... that are out-of-range based on having either excessive radiation dose or inadequate image quality relative to evidence-based thresholds based on the clinical indication for the exam. All diagnostic CT exams of specified anatomic sites performed in hospital non-inpatient care settings (including emergency settings) are eligible. This eCQM requires the use of additional software to access primary data elements stored within radiology electronic health records and translate them into data elements that can be ingested by this eCQM. Additional details are included in the Guidance field.
Show more >
This measure is an episode of care measure that provides a standardized method for monitoring the performance of diagnostic CT to discourage unnecessarily high radiation doses, a risk factor for cancer, while preserving image quality. This measure is expressed as a percentage of CT exams that are out-of-range based on having either excessive radiation dose or inadequate image quality relative to evidence-based thresholds based on the clinical indication for the exam. All diagnostic CT exams of specified anatomic sites performed in hospital non-inpatient care settings (including emergency settings) are eligible. This eCQM requires the use of additional software to access primary data elements stored within radiology electronic health records and translate them into data elements that can be ingested by this eCQM. Additional details are included in the Guidance field.
Show less |
This measure is an episode of care measure that provides a standardized method for monitoring the performance of diagnostic CT to discourage unnecessarily high radiation doses, a risk factor for cancer, while preserving image quality. This measure is expressed as a percentage of CT exams... that are out-of-range based on having either excessive radiation dose or inadequate image quality relative to evidence-based thresholds based on the clinical indication for the exam. All diagnostic CT exams of specified anatomic sites performed in hospital non-inpatient care settings (including emergency settings) are eligible. This eCQM requires the use of additional software to access primary data elements stored within radiology electronic health records and translate them into data elements that can be ingested by this eCQM. Additional details are included in the Guidance field.
Show more >
This measure is an episode of care measure that provides a standardized method for monitoring the performance of diagnostic CT to discourage unnecessarily high radiation doses, a risk factor for cancer, while preserving image quality. This measure is expressed as a percentage of CT exams that are out-of-range based on having either excessive radiation dose or inadequate image quality relative to evidence-based thresholds based on the clinical indication for the exam. All diagnostic CT exams of specified anatomic sites performed in hospital non-inpatient care settings (including emergency settings) are eligible. This eCQM requires the use of additional software to access primary data elements stored within radiology electronic health records and translate them into data elements that can be ingested by this eCQM. Additional details are included in the Guidance field.
Show less |
Measure Scoring |
Proportion measure
|
Proportion measure
|
Measure Type |
Intermediate Clinical Outcome
|
Intermediate Outcome
|
Stratification |
None
|
None
|
Risk Adjustment |
None
|
None
|
Rationale |
Diagnostic imaging using CT occurs in more than a third of acute care hospitalizations in the U.S. (Vance, 2013) and greater than 90 million scans are performed annually in the U.S. (IMV, 2019). There is marked observed variation in the radiation doses used to perform these exams... (Smith-Bindman, 2019). The inconsistency in how CT exams are performed represents a significant, unnecessary, and modifiable iatrogenic health risk, as there is extensive epidemiological and biological evidence that suggests exposure to radiation in the same range as that routinely delivered by CT increases a person's risk of developing cancer (Board of Radiation Effects, 2006; Grant, 2017; Hong, 2019; Sakata, 2019; Sadakane, 2019, references a and b; Bernier, 2019; Meulepas, 2019; Brenner, 2020; Berrington de Gonzalez, 2020; Sugiyama, 2020; Hauptmann, 2020; Huang, 2020; Abalo, 2021; Cao, 2022; Hauptmann, 2023). It is estimated that 2% (37,000) of the 1.8 million cancers diagnosed annually in the U.S. are caused by CT exams (Berrington de Gonzalez, 2009; NCI Cancer Statistics, 2020). The measure focuses on reducing radiation dose in CT, an intermediate outcome directly and proportionally related to cancer prevention. As radiation dose is known to be directly related and proportional to future cancer risk (Board of Radiation Effects, 2006; Berrington de Gonzalez, 2009), any reduction in radiation exposure would be expected to lead to a proportional reduction in cancers. Research suggests that when healthcare organizations and clinicians are provided with a summary of their CT radiation doses, their subsequent doses can be reduced without changing the usefulness of these tests (Smith-Bindman, 2020). On the basis of the current estimated number of CT scans performed annually in the U.S. (IMV, 2019), distribution in scan types and observed doses (Demb, 2017; Smith-Bindman, 2019), modeling of the cancer risk associated with CT at different ages of exposure (Berrington de Gonzalez, 2009), and costs of cancer care (Dieguez, 2017; Mariotto, 2011), an estimated 13,982 cancers could be prevented among Medicare beneficiaries annually, resulting in $1.86 billion to $5.21 billion annual cost savings. These cost calculations were supported by more recent data on cancer survivorship and costs, which yielded an estimated $3.04 billion dollars in annual costs savings to Medicare. (Mariotto, 2020; NCI Office of Cancer Survivorship, 2022).
Show more >
Diagnostic imaging using CT occurs in more than a third of acute care hospitalizations in the U.S. (Vance, 2013) and greater than 90 million scans are performed annually in the U.S. (IMV, 2019). There is marked observed variation in the radiation doses used to perform these exams (Smith-Bindman, 2019). The inconsistency in how CT exams are performed represents a significant, unnecessary, and modifiable iatrogenic health risk, as there is extensive epidemiological and biological evidence that suggests exposure to radiation in the same range as that routinely delivered by CT increases a person's risk of developing cancer (Board of Radiation Effects, 2006; Grant, 2017; Hong, 2019; Sakata, 2019; Sadakane, 2019, references a and b; Bernier, 2019; Meulepas, 2019; Brenner, 2020; Berrington de Gonzalez, 2020; Sugiyama, 2020; Hauptmann, 2020; Huang, 2020; Abalo, 2021; Cao, 2022; Hauptmann, 2023). It is estimated that 2% (37,000) of the 1.8 million cancers diagnosed annually in the U.S. are caused by CT exams (Berrington de Gonzalez, 2009; NCI Cancer Statistics, 2020). The measure focuses on reducing radiation dose in CT, an intermediate outcome directly and proportionally related to cancer prevention. As radiation dose is known to be directly related and proportional to future cancer risk (Board of Radiation Effects, 2006; Berrington de Gonzalez, 2009), any reduction in radiation exposure would be expected to lead to a proportional reduction in cancers. Research suggests that when healthcare organizations and clinicians are provided with a summary of their CT radiation doses, their subsequent doses can be reduced without changing the usefulness of these tests (Smith-Bindman, 2020). On the basis of the current estimated number of CT scans performed annually in the U.S. (IMV, 2019), distribution in scan types and observed doses (Demb, 2017; Smith-Bindman, 2019), modeling of the cancer risk associated with CT at different ages of exposure (Berrington de Gonzalez, 2009), and costs of cancer care (Dieguez, 2017; Mariotto, 2011), an estimated 13,982 cancers could be prevented among Medicare beneficiaries annually, resulting in $1.86 billion to $5.21 billion annual cost savings. These cost calculations were supported by more recent data on cancer survivorship and costs, which yielded an estimated $3.04 billion dollars in annual costs savings to Medicare. (Mariotto, 2020; NCI Office of Cancer Survivorship, 2022).
Show less |
Diagnostic imaging using CT occurs in more than a third of acute care hospitalizations in the U.S. (Vance et al., 2013) and greater than 90 million scans are performed annually in the U.S. (IMV, 2019). There is marked observed variation in the radiation doses used to perform these exams... (Smith-Bindman et al., 2019). The inconsistency in how CT exams are performed represents a significant, unnecessary, and modifiable iatrogenic health risk, as there is extensive epidemiological and biological evidence that suggests exposure to radiation in the same range as that routinely delivered by CT increases a person's risk of developing cancer (Board of Radiation Effects, 2006; Grant, 2017; Hong, Han, Jung, & Kim 2019; Sakata, 2019; Sadakane, 2019; Bernier, 2019; Meulepas, 2019; Brenner, 2020; Berrington de Gonzalez, 2020; Sugiyama, 2020; Hauptmann, 2020; Huang, 2020; Abalo, 2021; Cao, 2022; Hauptmann, 2023). It is estimated that 2% (37,000) of the 1.8 million cancers diagnosed annually in the U.S. are caused by CT exams (Berrington de Gonzalez, 2009; NCI Cancer Statistics, 2020). The measure focuses on reducing radiation dose in CT, an intermediate outcome directly and proportionally related to cancer prevention. As radiation dose is known to be directly related and proportional to future cancer risk (Board of Radiation Effects, 2006; Berrington de Gonzalez et al., 2009), any reduction in radiation exposure would be expected to lead to a proportional reduction in cancers. Research suggests that when healthcare organizations and clinicians are provided with a summary of their CT radiation doses, their subsequent doses can be reduced without changing the usefulness of these tests (Smith-Bindman, 2020). On the basis of the current estimated number of CT scans performed annually in the U.S. (IMV, 2019), distribution in scan types and observed doses (Demb et al., 2017; Smith-Bindman et al., 2019), modeling of the cancer risk associated with CT at different ages of exposure (Berrington de Gonzalez et al., 2009), and costs of cancer care (Dieguez, Ferro, & Pyenson, 2017; Mariotto, 2011), an estimated 13,982 cancers could be prevented among Medicare beneficiaries annually, resulting in $1.86 billion to $5.21 billion annual cost savings. These cost calculations were supported by more recent data on cancer survivorship and costs, which yielded an estimated $3.04 billion dollars in annual costs savings to Medicare. (Mariotto, Yabroff, Shao, Feuer, & Brown, 2011; NCI Office of Cancer Survivorship, 2022).
Show more >
Diagnostic imaging using CT occurs in more than a third of acute care hospitalizations in the U.S. (Vance et al., 2013) and greater than 90 million scans are performed annually in the U.S. (IMV, 2019). There is marked observed variation in the radiation doses used to perform these exams (Smith-Bindman et al., 2019). The inconsistency in how CT exams are performed represents a significant, unnecessary, and modifiable iatrogenic health risk, as there is extensive epidemiological and biological evidence that suggests exposure to radiation in the same range as that routinely delivered by CT increases a person's risk of developing cancer (Board of Radiation Effects, 2006; Grant, 2017; Hong, Han, Jung, & Kim 2019; Sakata, 2019; Sadakane, 2019; Bernier, 2019; Meulepas, 2019; Brenner, 2020; Berrington de Gonzalez, 2020; Sugiyama, 2020; Hauptmann, 2020; Huang, 2020; Abalo, 2021; Cao, 2022; Hauptmann, 2023). It is estimated that 2% (37,000) of the 1.8 million cancers diagnosed annually in the U.S. are caused by CT exams (Berrington de Gonzalez, 2009; NCI Cancer Statistics, 2020). The measure focuses on reducing radiation dose in CT, an intermediate outcome directly and proportionally related to cancer prevention. As radiation dose is known to be directly related and proportional to future cancer risk (Board of Radiation Effects, 2006; Berrington de Gonzalez et al., 2009), any reduction in radiation exposure would be expected to lead to a proportional reduction in cancers. Research suggests that when healthcare organizations and clinicians are provided with a summary of their CT radiation doses, their subsequent doses can be reduced without changing the usefulness of these tests (Smith-Bindman, 2020). On the basis of the current estimated number of CT scans performed annually in the U.S. (IMV, 2019), distribution in scan types and observed doses (Demb et al., 2017; Smith-Bindman et al., 2019), modeling of the cancer risk associated with CT at different ages of exposure (Berrington de Gonzalez et al., 2009), and costs of cancer care (Dieguez, Ferro, & Pyenson, 2017; Mariotto, 2011), an estimated 13,982 cancers could be prevented among Medicare beneficiaries annually, resulting in $1.86 billion to $5.21 billion annual cost savings. These cost calculations were supported by more recent data on cancer survivorship and costs, which yielded an estimated $3.04 billion dollars in annual costs savings to Medicare. (Mariotto, Yabroff, Shao, Feuer, & Brown, 2011; NCI Office of Cancer Survivorship, 2022).
Show less |
Clinical Recommendation Statement |
The measure aligns with numerous evidence- and consensus-based clinical guidelines asking radiologists to track, optimize, and lower CT radiation doses, guidelines that have been written by the American College of Radiology (Kanal, 2017), cardiovascular imaging societies (Hirshfeld,... 2018, references a, b and c noted below), Image Gently Alliance, an initiative begun by the American College of Radiology, the Radiological Society of North America, American Society of Radiologic Technologists, the American Association of Physicists in Medicine, and the Society of Pediatric Radiology, which dozens of U.S. and international organizations have joined as recently as 2020 (Image Gently Alliance, 2022), and the US Food and Drug Administration (FDA, 2019). This measure has been strongly supported by a Technical Expert Panel (TEP) comprising a diverse group of clinicians, patient advocates, and leaders of medical specialty societies, payers, and healthcare safety and accrediting organizations, all of whom were engaged through every stage of measure conceptualization, development, and testing. In assessing the face validity of the measure, 100% of TEP members agreed radiation dose and global noise are relevant metrics of CT quality, that size is an appropriate method of risk adjustment, and that performance on this measure of radiation dose and image quality as specified is a representation of quality.
Show more >
The measure aligns with numerous evidence- and consensus-based clinical guidelines asking radiologists to track, optimize, and lower CT radiation doses, guidelines that have been written by the American College of Radiology (Kanal, 2017), cardiovascular imaging societies (Hirshfeld, 2018, references a, b and c noted below), Image Gently Alliance, an initiative begun by the American College of Radiology, the Radiological Society of North America, American Society of Radiologic Technologists, the American Association of Physicists in Medicine, and the Society of Pediatric Radiology, which dozens of U.S. and international organizations have joined as recently as 2020 (Image Gently Alliance, 2022), and the US Food and Drug Administration (FDA, 2019). This measure has been strongly supported by a Technical Expert Panel (TEP) comprising a diverse group of clinicians, patient advocates, and leaders of medical specialty societies, payers, and healthcare safety and accrediting organizations, all of whom were engaged through every stage of measure conceptualization, development, and testing. In assessing the face validity of the measure, 100% of TEP members agreed radiation dose and global noise are relevant metrics of CT quality, that size is an appropriate method of risk adjustment, and that performance on this measure of radiation dose and image quality as specified is a representation of quality.
Show less |
The measure aligns with numerous evidence- and consensus-based clinical guidelines asking radiologists to track, optimize, and lower CT radiation doses, guidelines that have been written by the American College of Radiology (Kanal et al., 2017), cardiovascular imaging societies... (Hirshfeld et al., 2018, references a, b and c noted below), Image Gently Alliance, an initiative begun by the American College of Radiology, the Radiological Society of North America, American Society of Radiologic Technologists, the American Association of Physicists in Medicine, and the Society of Pediatric Radiology, which dozens of U.S. and international organizations have joined as recently as 2020 (Image Gently Alliance, 2022), and the US Food and Drug Administration (FDA, 2019). This measure has been strongly supported by a Technical Expert Panel (TEP) comprising a diverse group of clinicians, patient advocates, and leaders of medical specialty societies, payers, and healthcare safety and accrediting organizations, all of whom were engaged through every stage of measure conceptualization, development, and testing. In assessing the face validity of the measure, 100% of TEP members agreed radiation dose and global noise are relevant metrics of CT quality, that size is an appropriate method of risk adjustment, and that performance on this measure of radiation dose and image quality as specified is a representation of quality.
Show more >
The measure aligns with numerous evidence- and consensus-based clinical guidelines asking radiologists to track, optimize, and lower CT radiation doses, guidelines that have been written by the American College of Radiology (Kanal et al., 2017), cardiovascular imaging societies (Hirshfeld et al., 2018, references a, b and c noted below), Image Gently Alliance, an initiative begun by the American College of Radiology, the Radiological Society of North America, American Society of Radiologic Technologists, the American Association of Physicists in Medicine, and the Society of Pediatric Radiology, which dozens of U.S. and international organizations have joined as recently as 2020 (Image Gently Alliance, 2022), and the US Food and Drug Administration (FDA, 2019). This measure has been strongly supported by a Technical Expert Panel (TEP) comprising a diverse group of clinicians, patient advocates, and leaders of medical specialty societies, payers, and healthcare safety and accrediting organizations, all of whom were engaged through every stage of measure conceptualization, development, and testing. In assessing the face validity of the measure, 100% of TEP members agreed radiation dose and global noise are relevant metrics of CT quality, that size is an appropriate method of risk adjustment, and that performance on this measure of radiation dose and image quality as specified is a representation of quality.
Show less |
Improvement Notation |
Lower score indicates higher quality, and a decreased score over time indicates improvement
|
Decreased score indicates improvement
|
Definition |
CT Dose and Image Quality Category: reflects the type of exam performed based on body region and clinical indication. Each CT Dose and Image Quality Category has a specific set of dose and image quality (global noise) thresholds. Calculated CT Size-Adjusted Dose: reflects the total... radiation dose received during CT, risk-adjusted by patient size. The Calculated CT Size-Adjusted Dose thresholds vary by the CT Dose and Image Quality Category. Calculated CT Global Noise: reflects the image quality of the CT. The Calculated CT Global Noise thresholds vary by the CT Dose and Image Quality Category.
Show more >
CT Dose and Image Quality Category: reflects the type of exam performed based on body region and clinical indication. Each CT Dose and Image Quality Category has a specific set of dose and image quality (global noise) thresholds. Calculated CT Size-Adjusted Dose: reflects the total radiation dose received during CT, risk-adjusted by patient size. The Calculated CT Size-Adjusted Dose thresholds vary by the CT Dose and Image Quality Category. Calculated CT Global Noise: reflects the image quality of the CT. The Calculated CT Global Noise thresholds vary by the CT Dose and Image Quality Category.
Show less |
CT Dose and Image Quality Category: reflects the type of exam performed based on body region and clinical indication. Each CT Dose and Image Quality Category has a specific set of dose and image quality (global noise) thresholds. Calculated CT Size-Adjusted Dose: reflects the total... radiation dose received during CT, risk-adjusted by patient size. The Calculated CT Size-Adjusted Dose thresholds vary by the CT Dose and Image Quality Category. Calculated CT Global Noise: reflects the image quality of the CT. The Calculated CT Global Noise thresholds vary by the CT Dose and Image Quality Category.
Show more >
CT Dose and Image Quality Category: reflects the type of exam performed based on body region and clinical indication. Each CT Dose and Image Quality Category has a specific set of dose and image quality (global noise) thresholds. Calculated CT Size-Adjusted Dose: reflects the total radiation dose received during CT, risk-adjusted by patient size. The Calculated CT Size-Adjusted Dose thresholds vary by the CT Dose and Image Quality Category. Calculated CT Global Noise: reflects the image quality of the CT. The Calculated CT Global Noise thresholds vary by the CT Dose and Image Quality Category.
Show less |
Guidance |
This is an inverse measure; as such the higher the value the worse the performance. The level of aggregation for this eCQM is the facility. A parallel eCQM measures CT exams aggregated at the level of the clinician or clinician group. A single CT exam may be simultaneously measured in... both the MIPS and one of the hospital reporting programs (inpatient or outpatient); however, a single exam cannot be measured in both the inpatient and outpatient hospital quality reporting programs. TRANSLATION SOFTWARE As a radiology measure, the measure derives standardized data elements from structured fields within both the electronic health record (EHR) and the radiology electronic clinical data systems, including the Radiology Information System (RIS) and the Picture Archiving and Communication System (PACS). Primary imaging data including Radiation Dose Structured Reports and image pixel data are stored in the PACS in Digital Imaging and Communications in Medicine (DICOM) format, a universally adopted standard for medical imaging information. Because of limitations in their specifications and format, eCQMs cannot currently access and consume elements from these radiology sources in their original DICOM formats. Thus, translation software was developed to transform primary data into a format that the eCQM can consume. This eCQM requires the use of additional software (translation software) to access the primary data elements that are required for measure computation and translate them into data elements that can be ingested by this eCQM. The purpose of this translation software is to access and link these primary data elements with minimal site burden, assess each CT exam for eligibility based on initial population criteria, and generate the three data elements mapped to a clinical terminology for eCQM consumption: CT Dose and Image Quality Category, Calculated CT Size-Adjusted Dose, and Calculated CT Global Noise. The translation software necessary to use this eCQM is written and maintained by Alara Imaging, Inc. CODING The translation software will create three variables required for measure computation including the CT Dose and Image Quality Category (LOINC(R) Code 96914-7), the Calculated CT Global Noise (LOINC(R) Code 96912-1) and the Calculated CT Size-Adjusted Dose (LOINC(R) Code 96913-9). These variables are defined in the Definition field above. These transformed data elements can be stored in the EHR. MEASURE CALCULATION The measure will evaluate each included CT exam based on allowable thresholds that are specified by the CT Dose and Image Quality Category. An exam is considered out of range if either the Calculated CT Global Noise or the Calculated CT Size-Adjusted Dose is out of range for the CT Dose and Image Quality Category. Exams will be evaluated against their corresponding threshold, shown below with the following format: [Category shorthand (=CT Dose and Image Quality Category), threshold for the Calculated CT Global Noise in Hounsfield units, threshold for the Calculated CT Size-Adjusted Dose in dose length product]. [LA31752-1 (=Abdomen and Pelvis, Low Dose), 64, 598]; [LA31753-9 (=Abdomen and Pelvis, Routine Dose), 29, 644]; [LA31754-7 (=Abdomen and Pelvis, High Dose), 29, 1260]; [LA31755-4 (=Cardiac Low Dose), 55, 93]; [LA31756-2 (=Cardiac Routine Dose), 32, 576]; [LA31758-8 (=Chest Low Dose), 55, 377]; [LA31759-6 (=Chest Routine Dose), 49, 377]; [LA31761-2 (=Chest High Dose or Cardiac High Dose), 49, 1282]; [LA31762-0 (=Head Low Dose), 115, 582]; [LA31763-8 (=Head Routine Dose), 115, 1025]; [LA31764-6 (=Head High Dose), 115, 1832]; [LA31765-3 (=Upper or Lower Extremity), 73, 320]; [LA31766-1 (=Neck or Cervical Spine), 25, 1260]; [LA31767-9 (=Thoracic or Lumbar Spine), 25, 1260]; [LA31768-7 (=Combined Chest, Abdomen and Pelvis), 29, 1637]; [LA31851-1 (=Combined Thoracic and Lumbar Spine), 25, 2520]; [LA31769-5 (=Combined Head and Neck, Routine Dose), 25, 2285]; [LA31770-3 (=Combined Head and Neck, High Dose), 25, 3092] EXCLUSIONS CT scans with missing patient age or missing CT Dose and Image Quality Category (LOINC(R) 96914-7) are excluded from the initial population. CT scans with a missing Calculated Global Noise value or a missing Calculated CT Size-Adjusted Dose value are not included in the denominator. CT scans assigned a CT Dose and Image Quality Category (LOINC(R) 96914-7) value using the LOINC(R) answer list (LL5824-9) of full body (LA31771-1) are excluded from the denominator. These exams are included in the initial population because they have a non-missing CT Dose and Image Quality Category but are then removed as a Denominator Exclusion in the eCQM because the value is full body, which reflects CT exams that cannot be categorized by anatomical area or by clinical indication, either because they are simultaneous exams of multiple body regions outside of four commonly encountered multiple region groupings, or because there is insufficient data for their classification based on the given diagnosis and procedure codes. This eCQM is an episode-based measure and should be reported for each eligible CT scan performed in a hospital outpatient setting. This version of the eCQM uses QDM version 5.6. Please refer to the QDM page for more information on the QDM.
Show more >
This is an inverse measure; as such the higher the value the worse the performance. The level of aggregation for this eCQM is the facility. A parallel eCQM measures CT exams aggregated at the level of the clinician or clinician group. A single CT exam may be simultaneously measured in both the MIPS and one of the hospital reporting programs (inpatient or outpatient); however, a single exam cannot be measured in both the inpatient and outpatient hospital quality reporting programs. TRANSLATION SOFTWARE As a radiology measure, the measure derives standardized data elements from structured fields within both the electronic health record (EHR) and the radiology electronic clinical data systems, including the Radiology Information System (RIS) and the Picture Archiving and Communication System (PACS). Primary imaging data including Radiation Dose Structured Reports and image pixel data are stored in the PACS in Digital Imaging and Communications in Medicine (DICOM) format, a universally adopted standard for medical imaging information. Because of limitations in their specifications and format, eCQMs cannot currently access and consume elements from these radiology sources in their original DICOM formats. Thus, translation software was developed to transform primary data into a format that the eCQM can consume. This eCQM requires the use of additional software (translation software) to access the primary data elements that are required for measure computation and translate them into data elements that can be ingested by this eCQM. The purpose of this translation software is to access and link these primary data elements with minimal site burden, assess each CT exam for eligibility based on initial population criteria, and generate the three data elements mapped to a clinical terminology for eCQM consumption: CT Dose and Image Quality Category, Calculated CT Size-Adjusted Dose, and Calculated CT Global Noise. The translation software necessary to use this eCQM is written and maintained by Alara Imaging, Inc. CODING The translation software will create three variables required for measure computation including the CT Dose and Image Quality Category (LOINC(R) Code 96914-7), the Calculated CT Global Noise (LOINC(R) Code 96912-1) and the Calculated CT Size-Adjusted Dose (LOINC(R) Code 96913-9). These variables are defined in the Definition field above. These transformed data elements can be stored in the EHR. MEASURE CALCULATION The measure will evaluate each included CT exam based on allowable thresholds that are specified by the CT Dose and Image Quality Category. An exam is considered out of range if either the Calculated CT Global Noise or the Calculated CT Size-Adjusted Dose is out of range for the CT Dose and Image Quality Category. Exams will be evaluated against their corresponding threshold, shown below with the following format: [Category shorthand (=CT Dose and Image Quality Category), threshold for the Calculated CT Global Noise in Hounsfield units, threshold for the Calculated CT Size-Adjusted Dose in dose length product]. [LA31752-1 (=Abdomen and Pelvis, Low Dose), 64, 598]; [LA31753-9 (=Abdomen and Pelvis, Routine Dose), 29, 644]; [LA31754-7 (=Abdomen and Pelvis, High Dose), 29, 1260]; [LA31755-4 (=Cardiac Low Dose), 55, 93]; [LA31756-2 (=Cardiac Routine Dose), 32, 576]; [LA31758-8 (=Chest Low Dose), 55, 377]; [LA31759-6 (=Chest Routine Dose), 49, 377]; [LA31761-2 (=Chest High Dose or Cardiac High Dose), 49, 1282]; [LA31762-0 (=Head Low Dose), 115, 582]; [LA31763-8 (=Head Routine Dose), 115, 1025]; [LA31764-6 (=Head High Dose), 115, 1832]; [LA31765-3 (=Upper or Lower Extremity), 73, 320]; [LA31766-1 (=Neck or Cervical Spine), 25, 1260]; [LA31767-9 (=Thoracic or Lumbar Spine), 25, 1260]; [LA31768-7 (=Combined Chest, Abdomen and Pelvis), 29, 1637]; [LA31851-1 (=Combined Thoracic and Lumbar Spine), 25, 2520]; [LA31769-5 (=Combined Head and Neck, Routine Dose), 25, 2285]; [LA31770-3 (=Combined Head and Neck, High Dose), 25, 3092] EXCLUSIONS CT scans with missing patient age or missing CT Dose and Image Quality Category (LOINC(R) 96914-7) are excluded from the initial population. CT scans with a missing Calculated Global Noise value or a missing Calculated CT Size-Adjusted Dose value are not included in the denominator. CT scans assigned a CT Dose and Image Quality Category (LOINC(R) 96914-7) value using the LOINC(R) answer list (LL5824-9) of full body (LA31771-1) are excluded from the denominator. These exams are included in the initial population because they have a non-missing CT Dose and Image Quality Category but are then removed as a Denominator Exclusion in the eCQM because the value is full body, which reflects CT exams that cannot be categorized by anatomical area or by clinical indication, either because they are simultaneous exams of multiple body regions outside of four commonly encountered multiple region groupings, or because there is insufficient data for their classification based on the given diagnosis and procedure codes. This eCQM is an episode-based measure and should be reported for each eligible CT scan performed in a hospital outpatient setting. This version of the eCQM uses QDM version 5.6. Please refer to the QDM page for more information on the QDM.
Show less |
The level of aggregation for this eCQM is the facility. A parallel eCQM measures CT exams aggregated at the level of the clinician or clinician group. A single CT exam may be simultaneously measured in both the Merit-based Incentive Payment System (MIPS) and one of the hospital reporting... programs (inpatient or outpatient); however, a single exam cannot be measured in both the inpatient and outpatient hospital quality reporting programs. TRANSLATION SOFTWARE As a radiology measure, the measure derives standardized data elements from structured fields within both the electronic health record (EHR) and the radiology electronic clinical data systems, including the Radiology Information System (RIS) and the Picture Archiving and Communication System (PACS). Primary imaging data including Radiation Dose Structured Reports and image pixel data are stored in the PACS in Digital Imaging and Communications in Medicine (DICOM) format, a universally adopted standard for medical imaging information. Because of limitations in their specifications and format, eCQMs cannot currently access and consume elements from these radiology sources in their original DICOM formats. Thus, translation software was developed to transform primary data into a format that the eCQM can consume. This eCQM requires the use of additional software (translation software) to access the primary data elements that are required for measure computation and translate them into data elements that can be ingested by this eCQM. The purpose of this translation software is to access and link these primary data elements with minimal site burden, assess each CT exam for eligibility based on initial population criteria, and generate the three data elements mapped to a clinical terminology for eCQM consumption: CT Dose and Image Quality Category, Calculated CT Size-Adjusted Dose, and Calculated CT Global Noise. The free translation software necessary to use this eCQM is written and maintained by Alara Imaging, Inc. However, any software vendor capable of calculating and reporting this eCQM in accordance with the measure’s specifications, including combining radiology data with electronic health system data, and transforming radiology data into a format compatible with eCQM reporting, may report this measure on behalf of hospitals and clinicians. CODING The translation software will create three variables required for measure computation including the CT Dose and Image Quality Category (LOINC(R) Code 96914-7), the Calculated CT Global Noise (LOINC(R) Code 96912-1) and the Calculated CT Size-Adjusted Dose (LOINC(R) Code 96913-9). These variables are defined in the Definition field above. These transformed data elements can be stored in the EHR. MEASURE CALCULATION The measure will evaluate each included CT exam based on allowable thresholds that are specified by the CT Dose and Image Quality Category. An exam is considered out of range if either the Calculated CT Global Noise or the Calculated CT Size-Adjusted Dose is out of range for the CT Dose and Image Quality Category. Exams will be evaluated against their corresponding threshold, shown below with the following format: [Category shorthand (=CT Dose and Image Quality Category), threshold for the Calculated CT Global Noise in Hounsfield units, threshold for the Calculated CT Size-Adjusted Dose in dose length product]. [LA31752-1 (=Abdomen and Pelvis, Low Dose), 64, 598]; [LA31753-9 (=Abdomen and Pelvis, Routine Dose), 29, 644]; [LA31754-7 (=Abdomen and Pelvis, High Dose), 29, 1260]; [LA31755-4 (=Cardiac Low Dose), 55, 93]; [LA31756-2 (=Cardiac Routine Dose), 32, 576]; [LA31758-8 (=Chest Low Dose), 55, 377]; [LA31759-6 (=Chest Routine Dose), 49, 377]; [LA31761-2 (=Chest High Dose or Cardiac High Dose), 49, 1282]; [LA31762-0 (=Head Low Dose), 115, 582]; [LA31763-8 (=Head Routine Dose), 115, 1025]; [LA31764-6 (=Head High Dose), 115, 1832]; [LA31765-3 (=Upper or Lower Extremity), 73, 320]; [LA31766-1 (=Neck or Cervical Spine), 25, 1260]; [LA31767-9 (=Thoracic or Lumbar Spine), 25, 1260]; [LA31768-7 (=Combined Chest, Abdomen and Pelvis), 29, 1637]; [LA31851-1 (=Combined Thoracic and Lumbar Spine), 25, 2520]; [LA31769-5 (=Combined Head and Neck, Routine Dose), 25, 2285]; [LA31770-3 (=Combined Head and Neck, High Dose), 25, 3092] EXCLUSIONS CT scans with missing patient age or missing CT Dose and Image Quality Category (LOINC(R) 96914-7) are excluded from the initial population. CT scans with a missing Calculated Global Noise value or a missing Calculated CT Size-Adjusted Dose value are not included in the denominator. CT scans assigned a CT Dose and Image Quality Category (LOINC(R) 96914-7) value using the LOINC(R) answer list (LL5824-9) of full body (LA31771-1) are excluded from the denominator. These exams are included in the initial population because they have a non-missing CT Dose and Image Quality Category but are then removed as a Denominator Exclusion in the eCQM because the value is full body, which reflects CT exams that cannot be categorized by anatomical area or by clinical indication, either because they are simultaneous exams of multiple body regions outside of four commonly encountered multiple region groupings, or because there is insufficient data for their classification based on the given diagnosis and procedure codes. This eCQM is an episode-based measure and should be reported for each eligible CT scan performed in a hospital outpatient setting. This version of the eCQM uses QDM version 5.6. Please refer to the QDM page for more information on the QDM.
Show more >
The level of aggregation for this eCQM is the facility. A parallel eCQM measures CT exams aggregated at the level of the clinician or clinician group. A single CT exam may be simultaneously measured in both the Merit-based Incentive Payment System (MIPS) and one of the hospital reporting programs (inpatient or outpatient); however, a single exam cannot be measured in both the inpatient and outpatient hospital quality reporting programs. TRANSLATION SOFTWARE As a radiology measure, the measure derives standardized data elements from structured fields within both the electronic health record (EHR) and the radiology electronic clinical data systems, including the Radiology Information System (RIS) and the Picture Archiving and Communication System (PACS). Primary imaging data including Radiation Dose Structured Reports and image pixel data are stored in the PACS in Digital Imaging and Communications in Medicine (DICOM) format, a universally adopted standard for medical imaging information. Because of limitations in their specifications and format, eCQMs cannot currently access and consume elements from these radiology sources in their original DICOM formats. Thus, translation software was developed to transform primary data into a format that the eCQM can consume. This eCQM requires the use of additional software (translation software) to access the primary data elements that are required for measure computation and translate them into data elements that can be ingested by this eCQM. The purpose of this translation software is to access and link these primary data elements with minimal site burden, assess each CT exam for eligibility based on initial population criteria, and generate the three data elements mapped to a clinical terminology for eCQM consumption: CT Dose and Image Quality Category, Calculated CT Size-Adjusted Dose, and Calculated CT Global Noise. The free translation software necessary to use this eCQM is written and maintained by Alara Imaging, Inc. However, any software vendor capable of calculating and reporting this eCQM in accordance with the measure’s specifications, including combining radiology data with electronic health system data, and transforming radiology data into a format compatible with eCQM reporting, may report this measure on behalf of hospitals and clinicians. CODING The translation software will create three variables required for measure computation including the CT Dose and Image Quality Category (LOINC(R) Code 96914-7), the Calculated CT Global Noise (LOINC(R) Code 96912-1) and the Calculated CT Size-Adjusted Dose (LOINC(R) Code 96913-9). These variables are defined in the Definition field above. These transformed data elements can be stored in the EHR. MEASURE CALCULATION The measure will evaluate each included CT exam based on allowable thresholds that are specified by the CT Dose and Image Quality Category. An exam is considered out of range if either the Calculated CT Global Noise or the Calculated CT Size-Adjusted Dose is out of range for the CT Dose and Image Quality Category. Exams will be evaluated against their corresponding threshold, shown below with the following format: [Category shorthand (=CT Dose and Image Quality Category), threshold for the Calculated CT Global Noise in Hounsfield units, threshold for the Calculated CT Size-Adjusted Dose in dose length product]. [LA31752-1 (=Abdomen and Pelvis, Low Dose), 64, 598]; [LA31753-9 (=Abdomen and Pelvis, Routine Dose), 29, 644]; [LA31754-7 (=Abdomen and Pelvis, High Dose), 29, 1260]; [LA31755-4 (=Cardiac Low Dose), 55, 93]; [LA31756-2 (=Cardiac Routine Dose), 32, 576]; [LA31758-8 (=Chest Low Dose), 55, 377]; [LA31759-6 (=Chest Routine Dose), 49, 377]; [LA31761-2 (=Chest High Dose or Cardiac High Dose), 49, 1282]; [LA31762-0 (=Head Low Dose), 115, 582]; [LA31763-8 (=Head Routine Dose), 115, 1025]; [LA31764-6 (=Head High Dose), 115, 1832]; [LA31765-3 (=Upper or Lower Extremity), 73, 320]; [LA31766-1 (=Neck or Cervical Spine), 25, 1260]; [LA31767-9 (=Thoracic or Lumbar Spine), 25, 1260]; [LA31768-7 (=Combined Chest, Abdomen and Pelvis), 29, 1637]; [LA31851-1 (=Combined Thoracic and Lumbar Spine), 25, 2520]; [LA31769-5 (=Combined Head and Neck, Routine Dose), 25, 2285]; [LA31770-3 (=Combined Head and Neck, High Dose), 25, 3092] EXCLUSIONS CT scans with missing patient age or missing CT Dose and Image Quality Category (LOINC(R) 96914-7) are excluded from the initial population. CT scans with a missing Calculated Global Noise value or a missing Calculated CT Size-Adjusted Dose value are not included in the denominator. CT scans assigned a CT Dose and Image Quality Category (LOINC(R) 96914-7) value using the LOINC(R) answer list (LL5824-9) of full body (LA31771-1) are excluded from the denominator. These exams are included in the initial population because they have a non-missing CT Dose and Image Quality Category but are then removed as a Denominator Exclusion in the eCQM because the value is full body, which reflects CT exams that cannot be categorized by anatomical area or by clinical indication, either because they are simultaneous exams of multiple body regions outside of four commonly encountered multiple region groupings, or because there is insufficient data for their classification based on the given diagnosis and procedure codes. This eCQM is an episode-based measure and should be reported for each eligible CT scan performed in a hospital outpatient setting. This version of the eCQM uses QDM version 5.6. Please refer to the QDM page for more information on the QDM.
Show less |
Initial Population |
All CT scans in adults aged 18 years and older at the start of the measurement period that have a CT Dose and Image Quality Category and were performed in a hospital outpatient department (including emergency), during the measurement period, and not part of an inpatient hospitalization.
... Show more >
All CT scans in adults aged 18 years and older at the start of the measurement period that have a CT Dose and Image Quality Category and were performed in a hospital outpatient department (including emergency), during the measurement period, and not part of an inpatient hospitalization.
Show less |
All CT scans in adults aged 18 years and older at the start of the measurement period that have a CT Dose and Image Quality Category and were not performed in a hospital inpatient setting, that ends during the measurement period, and not part of an inpatient hospitalization
... Show more >
All CT scans in adults aged 18 years and older at the start of the measurement period that have a CT Dose and Image Quality Category and were not performed in a hospital inpatient setting, that ends during the measurement period, and not part of an inpatient hospitalization
Show less |
Denominator |
Equals Initial population with a CT Dose and Image Quality Category, a Calculated Global Noise value, and a Calculated CT Size-Adjusted Dose value
|
Equals Initial Population with a CT Dose and Image Quality Category, a Calculated Global Noise value, and a Calculated CT Size-Adjusted Dose value
|
Denominator Exclusions |
Denominator, where a CT scan with a CT Dose and Image Quality Category = full body
|
Denominator, where a CT scan with a CT Dose and Image Quality Category = full body
|
Numerator |
Calculated CT Size-Adjusted Dose greater than or equal to a threshold specific to the CT Dose and Image Quality Category, or Calculated CT Global Noise value greater than or equal to a threshold specific to the CT Dose and Image Quality Category
|
Calculated CT Size-Adjusted Dose greater than or equal to a threshold specific to the CT Dose and Image Quality Category, or Calculated CT Global Noise value greater than or equal to a threshold specific to the CT Dose and Image Quality Category
|
Numerator Exclusions |
Not Applicable
|
None
|
Denominator Exceptions |
None
|
None
|
Next Version |
|
No Version Available
|
Previous Version |
No Version Available
|
|