
Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 1

Lisa Anderson: Hello everyone. I'm Lisa Anderson, project director for eClinical in the department
of quality measurement at The Joint Commission. I would like to thank you for
joining our Pioneers in Quality 2018/2019 Expert to Expert series. Today's
session is focused on the technical implementation of the clinical quality
language, or CQL. For closed captioning services, please use the link on this
slide. This information is also accessible via the participant pane and the
GoToWebcast platform. The Joint Commission and CMS designed the Pioneers
in Quality Expert to Expert series to support hospitals in using electronic clinical
quality measures and transitioning to the new clinical quality language. We
introduced this series with a CQL basics webinar followed by six sessions
covering the eligible hospital/critical access eCQMs for the 2019 reporting year.

Today's session is intended for a technical staff audience, such as EHR report
writers, hospital IT staff engaged in eCQM implementation, clinical informaticists,
EHR analysts, and vendor staff that support hospitals in their CQL
implementation. Clinical staff attending should also be conversant in the technical
concepts of eCQM implementation. This session is scheduled for 90 minutes to
allow for a live Q and A session. At the end of today's session, participants
should be able to describe how CQL compares to SQL, describe the logic
sharing architecture of CQL, and locate resources regarding CQL technical
implementation.

The slides are available in the Event Resources pane. Select the PDF to
download and print the slides. These sessions are meant to be interactive. The
Ask a Question pane permits participants to ask questions and view responses in
real time. If possible, please reference the slide number in your question.
Additionally, you can visit links or resources noted in the slides. Please note, a
recording of today's presentation, the slide deck, and Q and A documents will be
available on The Joint Commission website in a few weeks. We hope you find
this information helpful and share it with interested colleagues.

CE credits are offered for all our pioneering quality webinars. This webinar is
approved for one continuing education credit for Accreditation Council for
Continuing Medical Education, American Nurses Credentialing Center, American
College of Healthcare Executives, California Board of Registered Nursing, and
International Association for Continuing Education and Training. CE, CME, CEU
credits are available for the live audio only. Credits will not be available for
webinar replays. To claim credit, you must have individually registered for the
webinar, listen to the live webinar in its entirety (only those listening live are
eligible to receive credit), completed a post-program evaluation/at a station. The
program survey link will be sent to participants' emails after the webinar. Principle
certificates will be mailed to those eligible two weeks after the session. All
participant CE certificates will be sent at the same time. If you are listening with
colleagues and do not use your own link or phone line to join, you can still obtain
CE credit if you meet these three criteria. An automated email after the session
will provide information on how to access the survey. For more information on
The Joint Commission’s continuing education policies, please visit the link
provided at the bottom of this slide.

The following staff and speakers have disclosed that neither they, nor their
spouses or partners, have any financial arrangements or affiliations with
corporate organizations that either provide educational grants for this program or

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 2

may be referenced in this activity. Lisa Anderson, MSN, RN-BC project director
eClinical, Department of Quality Measurement, and Bryn Rhodes, ESAC. ESAC
is a Centers for Medicare and Medicaid Services subcontractor. Today's session
will be divided into three sections: CQL implementation, CQL/SQL side by side,
and CQL/SQL translation. I am now going to turn it over to Bryn to begin his
presentation.

Bryn Rhodes: Thank you, Lisa. So my name is Bryn Rhodes. I have been working with clinical
quality language for the past several years. I'm the editor of the specification, an
active in the clinical decision support and clinical quality information work groups
at HL7 where we steward that specification and carry on that work. So clinical
quality language, so let's start with just a very high level: What is it? So we built
clinical quality language to address two primary use cases. So one, how can we
most effectively share clinical logic, and how can we do so in a way that
streamlines consumption by both humans and machines? So CQL is an HL7
standard designed to enable automatic point-to-point sharing of executable
clinical knowledge, so eCQMs are a great example of that and two, to provide a
clinically-focused, author-friendly, and human-readable language.

The language was developed as a harmonization of requirements from across
the quality improvement spectrum and from several different and overlapping
standards for logic representation, including Arden, GELLO, QDM, HQMF. In
2014, several work groups within HL7 produced a domain analysis model based
on these input specifications and informed by modern compiler and language
design approaches, and this model formed the foundation for clinical quality
language, and over the next several years, that specification was built with the
input and involvement of a broad spectrum of clinical quality stakeholders.

At this point, we've completed the fourth FTU ballot and the language has been
adopted by CMS for use in specifying eCQMS, and it's being piloted in CQL-
based decision support in various locations. We're also seeing increased
adoption among implementation guides as its broad utility for sharing clinical
logic across the healthcare domain is being explored for use in public health,
guideline development, vendors, decision support providers, and clinical
research. And there's a nice, simple URL there for accessing the currently
published version of the specification.

So when we think about the problem with sharing clinical logic, it's critical to
separate the concerns as much as possible. So the conceptual level of CQL
specification approaches this problem are considering three main components.
First is the data model, so the structures of the information involved. Second is
the terminology, so these are standard terminologies like SNOMED-CT, LOINC,
RxNorm. And third is the logic itself, so CQL intentionally keeps these
components separate. So the CQL specification is concerned with how you
express logic in terms of some data model and relating to some set of
terminology. If separation allows the data models and terminologies to evolve,
independent of the CQL specification, it gives a lot more flexibility architecturally,
and as a result, CQL is able to be used with different data models, so we can use
it with the quality data model or we can use it with Ire or any other data model
that you can describe the structures in a way that CQL translator can consume.

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 3

So looking broadly at the architecture of CQL, at the highest level you have a
syntax that authors can use to produce libraries that contain human-readable, but
precise logic, so this is when you look at the human-readable narrative for any
CQM, for example, you'll see the clinical quality language statements. The
second layer is what we call expression logical model, so statements of CQL are
translated into ELM, and ELM is an XML representation of the logic involved, and
it's a machine friendly rendering. It's designed to support and to streamline
language processing applications, and the development of things like translators
and engines to support consumption of that logic automatically.

Digging into that a little deeper, this is a depiction of a standard compiler pipeline.
You start at the conceptual level with the syntax. In this example just a simple
arithmetic expression. CQL as a language is defined at this level. The
specification has a grammar that defines all of the tokens involved and the
parsing rules. So the first stage is lexical analysis to break that grammars down
into a stream of tokens, then to parse those tokens into an abstract syntax tree.
The expression logical model is defined at this level, the level of an abstract
syntax tree. That allows language processing applications to more easily deal
with the logic expressions involved.

The next page then is semantic analysis, where we validate that the expressions
in the language make sense. You're adding integers, you're not adding strings
and integers. So what you get out of semantic analysis is then a verified syntax
tree. From there you can use that to compile, or translate, or run whatever your
particular environment supports.

This pipeline is based on modern compiler theory. In general this is how
compilers work. By linking in at this level and defining the specification in this
way, we've taken as much as possible of the leg work out of turning CQL into
something that is a machine executable without making any platform specific
assumptions about where it's going to run, and how that's going to happen. That
results in a lot of flexibility for implementation.

Let's dig a little deeper into expression logical model. It's essentially a byte-code
representation, or if you're familiar with .net, it's an intermediate language
representation. It carries sufficient semantics to enable execution independent of
the CQL that produced it. The ELM that's shared, and if you look at the ECQ
packages, they have both CQL and ELM content. You can use the ELM directly
to actually perform translation or execution activities. So ELM is a canonical
representation. It has some more primitive operations that are focused on
supporting implementation use cases.

So in CQL you'll see a lot of ... we'll dig into them a bit later, but you'll see a lot of
high level construct that enable authors to write very, very clear and high level
expressions. Those are all translated down in the ELM to simpler representations
in terms of implementation. Fewer operators involved, and fewer choices about
implementation.

Conceptually this is the same abstraction that underlies HTML. So an HTML
webpage, for example, can describe a document independent of any particular
platform. Then platform specific browsers render that webpage, so users get the
same experience regardless of the technology they're using. So in the same way,

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 4

when we share the CQL description of and ECQM, you can render that in any
platform that supports usage of CQL.

So expression logical model, digging in just a little bit. ELM expressions are built
as trees of nodes. Each kind of expression is representative of different node
type. So two plus two, for example, is an add node with a literal node of two, and
a literal node of two. This format allows implementations. A naive implementation
of an engine, for example, can just deserialize this graph and execute each node
where each node understands how do execute its operation.

In general then, operations and functions and CQL have an equivalent ELM
representation. The equal operator and CQL is the equal ELM node type and
add, etc. If you look in the logical specification chapter of CQL, there's a
complete description of all of the node types for ELM, as well as the description
of the mapping from CQL to ELM.

So, type categories. In order to describe logic we need a basic type system. This
type system is the kind of minimum set of data types that you need in order to
describe information. Data models that are expressed for usage in CQL map to
these to provide a representation that CQL operators can consume. The primitive
types are Boolean, string, integer, the basic types you'd expect.

Then we have collection types, so you can have lists of any type. Then you have
structured types. These are class types like encounter, or patient and tuple types,
which is just a same as a class type, but it's anonymous. There's no name for it.
Its type is just the list of properties. Then interval types. You can have interval on
any type that is ordered, meaning it supports comparison. So if you have strings,
or integers, or decimals, many times you can define intervals over those because
they support ordering over the type.

Next, let's look at a simple example of a retrieve. Within CQL, one of the most
important constructs is the retrieve. Anytime you see the square brackets within
CQL, that's the retrieve. If you're familiar with QDM logic, this should be readily
familiar to you. The retrieve consists of a type, so this is in terms of the data
model. You're saying "I'm going to retrieve values from this type." That that might
correspond to a table in a relational system that might correspond to a document
store in a document based system. Then you say, "Within that diagnosis, I want
to match codes that are in the acute pharyngitis value set.”

This is a reference to a value set. That retrieve is designed to ensure that the
only points in CQL where you can actually access data all go through this
retrieved structure. You can think of it as the definition of the data access layer
within CQL. It's focused on only those types of retrieve that can be accelerated
through the use of indexes. We chose terminology and date range as the most
selective indexes across this type of information, across healthcare information.
That then is expressed in ELM using a retrieve node. You can see the data type
corresponds to diagnosis, but it's resolved to a particular a model type.

There's a template ID. This can be used to specify a template or a profile, and
then the code property. You'll notice that code isn't specified in the CQL. This is
the model info for QDM. It specifies that for diagnosis, the primary code filter type

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 5

is code. And then it indicates that the codes are coming from a reference to the
acute pharyngitis value set.

Digging into model info, this is the structure that the CQL translator uses to
describe data models. So for QDM, this is a snippet of the QDM diagnosis in
class in the model info there. As you can see it specifies the name, an identifier,
and a label. That label is the label that you actually use in CQL, whether or not
it's retrievable, so the model info supports describing structures that don't
necessarily correspond to things that can be retrieved, so only things that are
retrievable can appear in retrieves. It's a hierarchical structure, so you can
specify base types, and those types will inherit their content from the parent and
then define the elements available, so onset, abatement, anatomical location, et
cetera. That's just an example of what model info looks like.

System model defines the base types, so for all those primitives and the
structured types that are supported by the type system, as well as quantity, code,
and concept. And these are the clinically relevant data types, so quantities
appear all over in healthcare data and terminologies, of course, are ubiquitous.
So then, a CQL library, the named versioned grouping of CQL components. So
each library has a name and a version, specifies any number of data models.
Typically you'll see just one, but there's an implicit usage of system in all of them.
Then there's a terminology section. You can specify code systems, value sets,
and codes. Note that these are just declarations. We're just referring to
terminology that is defined elsewhere, so you don't use the CQL content to define
the terminology, you use it to declare references to the terminology so that you
can use this name, inpatient, as a reference to this value set anywhere in this
logic. And then you have parameters. These can be any kind of parameters in an
eCQM. You'll see a measurement period defaulting to an interval of the initial
effective period for the measurement. And then a context patient, we'll talk more
about that. And then the named expressions.

So patient context, CQL has the notion of a context. This is an implicit filter. It
allows authors to write from a particular perspective, so instead of having to say
medications for patient X, they can just say medications and they're in the patient
context, and so that retrieve only returns medications for a particular patient.
ECQMs are typically written from a patient perspective and that simplifies the
logic in the expression. The data access layer then is responsible for resolving
that pattern. So then here's an example of a rendering of an expression in CQL
to ELM. So inpatient encounters, this is a retrieve of the encounter performed in
the inpatient value set. Length of stay is less than or equal to 120 days, and the
discharge is during the measurement period. So you see this renders in ELM as
a query. The source alias of E, that source is the expression that is a retrieve of
encounter perform data in the inpatient value set, and then there's a filter, a
where, that consists of an and of the lesser equal of length of staying, which is a
property reference, and the in of discharge date time, which is again a property
reference and the measurement period which is a parameter reference. So the
CQL to ELM translator is taking CQL and producing this ELM output, and if you
look again on an eCQM package, you'll see both of these representations of the
measure are present.

So going back to evaluation approaches and this general CQL architecture.
When you go from CQL to ELM, you either have something that can evaluate

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 6

that ELM natively, or you need to translate it into something that runs in your
particular environment, so there's a JavaScript translator, or interpreter rather,
you could translate it into a Drools production system. For this presentation,
we're focusing on the SQL. So SQL is one of the, kind of, design inspirations for
CQL, so there are a lot of similarities between CQL and SQL, and translation
from the ELM to SQL is a fairly straightforward process intentionally.

So a comparison of CQL and SQ in terms of constructs. So one of the primary
central language constructs in CQL is a query. It's a clinically focused query
language where SQL is a generalist query language, but the clauses are very
similar. There's a source clause that's equivalent to the from clause in SQL.
There are relationship clauses with and without, that's similar to a join. We'll get
into some of the differences, and then the where clause is the same, and then
there's a return which is equivalent to the select clause, and a sword that's
equivalent to order by.

So if you look at the broad structure of CQL query as very similar to SQL, and
you can use a lot of the same ideas and thinking about those queries and how
they're implemented. So if we look at that example we were just looking at and
you pull out another tree of execution, it starts at the top of the query and then
you evaluate the retrieve, and for each element in that retrieve, you evaluate the
where in terms of the and property and the quantity, and that property reference
is a reference to the current iteration of the retrieve. So you can imagine that as
the pipelined execution, that's a fairly straightforward representation of the query
plan for that approach.

So one of the tools that is available for translating ELM is a .net project that was
built as part of the healthy decisions initiative. It is a framework for building ELM
language processing applications, and so what it does is just describe the
generic structure for the serializing ELM tree into a graph of nodes that perform
different operations. They might have an engine set of operations, you might
have a translation set and one of the projects that is built there currently is a
translation into SQL. It was used as part of the pilots during healthy decisions
initiative. It was used to validate the knowledge authoring specification examples
and to translate a chlamydia screening measure into SQL against an OMOP data
model. And so that tooling is somewhat outdated in terms of the
specific...outdated in terms of the specification, but the core ELM is the same
largely and so that is a reasonable starting point if people are interested and
there's a lot of I think, good kind of reference implementation code at that
repository.

So if we think a little bit about calculation architecture for CQL, we need these
basic components. You know at the highest level you need at least a calculation
engine that actually performs the calculations. You need a description of the
logic, how the measure calculates against the clinical information. You need
some representation of the model, the actual data involved. You need a data
access interface, so some way for the logic to actually retrieve data in terms of
that model. You need a terminology interface. Some way to actually reference
the terminologies that are involved. A CQL by design does not define
terminology, it just references them. So you need some interface to a terminology
server to resolve when you've said, give me the inpatient value set, what does
that mean? And you need some interface to libraries. You know, the CQL is

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 7

structured around libraries and you can share logic between measures, between
decision supports. And so you need some way when you're evaluating a CQL to
reference libraries that might be used within that logic.

So that gives kind of an overall, that was kind of a whirlwind tour of CQL and
ELM and how they relate to each other, and how you might use a CQL and a
calculation engine environment. So next we're going to look at what different
queries in CQL look like in SQL. So if you were to run them through a translator
from CQL to SQL, what that would actually look like.

So looking at just an example of a query, this is a straight forward encounter
performed non-elective inpatient encounter. Length in days is lacking, I guess
120 this retrieve is the source of the query and this nonelective encounter is the
alias. So this non-elective encounter is the name that is scoped to this query and
so whenever it's referenced within this query, it refers to an iteration of this
source. The non-elective encounter is referring to whichever encounter
performed we're currently ranging over and so that's how the logic relates to the
source.

So the equivalent example in SQL, this one is represented using an exist, shall
we say this is the equivalent to select star from encounter performed called non-
elective encounter? Okay. Where the non-elective encounters patient ID is that
patient ID? So this is that context where we've said using context a patient, the
evaluation environment, it provides that patient ID either by ranging over all the
patients that are available or by actually translating it into a patient level or into a
population level query with the patient filters. Are the patient relationships
established? It joins. Then we say and exists the select star from value set
codes, so this kind of is imagining a terminology implementation where you have
a value set codes table that has for each value set name the code and system.
And so this retrieve could be represented in an SQL database using this
structure.

So an alternative representation would be to say, do this with a join. It's the same
structure where you're just saying select star from encounter performed called
non-elective encounter. Join the value set codes on the value set name is non-
elective inpatient encounter and the VSC code matches the non-elective
encounter code.

So just kind of an aside about terminologies. All the terminology is referenced in
the measure are included in the terminology section of the narrative description
of the measure. They're also all defined at the top of any given ELM library. So
the value set references, the code system references, and the code references.
Those all will be present in the terminology section.

Looking at the terminology referenced by any given CQL library is a matter of
looking at the ELM and you can easily pull out all the terminology that's
referenced. There's no way to talk about terminology in the body of the CQL
without it being declared as a value set code system or code within the
terminology section. So that makes a terminology analysis much easier in CQL.

So filtering with where, you'll see timing crazes like tens during, those are
translated effectively to eight comparisons once you get down to the ELM. And

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 8

so the resulting SQL, I've left out the value set filters there, but we will effectively
say, and global length in days, this is a reference to that function here. Length in
days, a non-elective encounter, relevant period start and relevant period end, so
notice that I've got a relevant period here attribute. This is an interval valued
attribute in CQL and this would be typically represented in SQL as two different
columns, a start and an end.

So digging a little more into types of timing relationships. This is just a survey to
describe kind of what kinds of comparisons are available. You can compare just
date/times. You can compare a date/time and an interval. So you can say that
author date/time is during encounter relevant period. You can compare an
interval with a date/time so that you can say the relevant period includes the
author date/time, and you can also compare two intervals directly relevant period
during a measurement period. And so within the representation in SQL, those
would all need to be represented either as direct comparisons, as some SQL
equivalent of that operation. For example, you might define during a function user
defined function in SQL and use that as the implementation for a translation or
you might just in line the actual comparison so that the author date time is
between the start and stop of the relevant period.

Then for comparing two intervals, the same applies. You would either define user
defined functions to support the description of the during operation or you would
translate that directly to the equivalent comparisons in terms of the boundaries of
the intervals.

Intervals and timing phrases, there are several timing phrases available within
CQL and in general the translator is going to resolve those timing phrases in
terms of more primitive ELM operations. So that a translation layer doesn't have
to deal with all of the different possible combinations of timing phrases. They only
have to deal with the defined operations within the ELM and the CQL to ELM
translator represents the timing phrases in terms of those more basic primitives.
So you'll see operations like prevalence period overlaps. That's a direct interval
operator. You'll see phrases using starts and ends. So starts before the start or
starts on or before the end of. Those are actually translated into boundary
accesses on the interval involved. You'll see timing phrases with offsets. So you
can say, author date time 24 hours or less before the start. These are translated
variously into date, time, arithmetic operations or boundaries depending on the
timing phrase. But in ELM you won't see this timing phrase, you'll see a canonical
representation of it. And finally, timing phrases with precision. So you can
actually say what precision you want the comparisons to occur. So the relevant
period ends one day after the day of the start of the qualifying encounters
relevant period. That 'day of' means that you want that comparison to be
performed only to the day. You want to ignore time in that comparison. And the
precision will be carried through, and that's what's represented in the ELM. So all
the operations in ELM, you can specify a precision.

So as an example of relationships, there is a width relationship which is in SQL.
This is, in relational languages, it's called a semi-join. It's effectively a join, except
that you only return the left side of the join. So in this case, we're saying ischemic
stroke encounter event that thrombotic therapy at discharge such that the author
date time is during the relevant period. But you can do this with an exists. You
can say, select star from ischemic stroke encounter. So I'm assuming here the

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 9

existence of a view named "ischemic stroke encounter" and that that view would
correspond to that "ischemic stroke encounter" expression definition. And then
where exists, select star from antithrombotic therapy at discharge, where that
author date time is greater than or equal to the relevant period starts and less
than or equal to the relevant period ends. You could also use a between there if
your SQL dialects supported that.

For multiple relationships, if you have an encounter or a query like this, I'm
seeing a live birth encounter with gestational age 37 weeks or more with
substance administered breast milk and without substance administered dietary
intake other than breast milk. Both of those criteria apply in order to satisfy. So I
need to say where exists. That's the same pattern that we used up in the
previous example. And when not exists, select "substance administered, other
feeding".

So an example of alternative relationships, if you want to say in this case,
encounter with discharge disposition to home or police custody with an asthma
management plan completed, or an encounter with no asthma management plan
due to patient refusal. So that's in CQL, generally expressed as a union, since
you can't say "with and with", both of those would have to apply. So if you want
either of them to apply, state each criteria and then union them. And the same
applies in SQL, the equivalent there is to translate the select and then union the
results.

So an example of a multi-source query. CQL makes a distinction between a
single source and a multi-source query. Most queries in CQL are single source,
where you just ... And those are the kinds we've been looking at so far. Where
you just reference the source and an alias. For a multi-source query, you
introduced that with the "from", and then you can list any number of sources. So I
can say, from delivery encounter near-term, medical induction medication, and is
in labor. Those three sources are now all available within this query. So in SQL
that's equivalent to a times. So delivery encounter from delivery encounter near-
term, cross join medical induction medication, cross join is in labor.

And then the where clause is able to reference any of the aliases introduced in
the from clause in SQL, and the same is true in CQL. The from clause introduces
all of these aliases, and the where clause and the return clause can use of those
aliases. So you'll notice this return here on a multi-source query, the default
return is to include a tuple that has an element for each alias. And so if you've
just excluded the return, the result would include delivery encounter, induction
medication, and labor with the tuple for each of those sources, for each
combination of those sources. By saying return delivery encounter, I'm saying I
only want the delivery encounter results here. We do that in SQL with delivery
encounter dot star. That's not always available in SQL dialects. Some dialects
support that, and if it didn't support that, it would need to list all of the elements in
that select but a ... So that's the return clause there on a from multi-source query.

So for combining withs, CQL supports unions of different types. So in SQL, a
union can only be done between the same kinds of table, or the same kinds of
result. Within CQL, we allow something like this example, intervention order
comfort measures union intervention performed comfort measures. Those are
two different types of things, and the result in CQL will be a list that includes both

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 10

intervention orders and interventions performed. So the way to represent that in
SQL is to build what we typically see called an outer union, where you build out
the columns that are in common and then the columns that are not common are
null in the side that they're not present and specified in the side that they are
present. So we don't have a relevant period start in intervention order, and so
that shows up as a null named the same thing. And so what you get is a table in
SQL that has some columns that are null from both sides of that union.

And once you have nulls then the coalesce operator can be used to say combine
elements that may or may not be present. So in this case, when you reference
this list in a subsequent expression, you would typically see the usage of
coalesce to say if the current row has a relevant period, use that. If that's not
present, then use the author date time.

So the return clause can also be used to shape results. In this case, we want an
assessment performed. And then we went to union laboratory test performed, but
we want that laboratory test performed to look like an assessment performed so
that subsequent operations can all treat that content the same way. So we're
effectively constructing an assessment performed using the content from this
laboratory test performed and using this assessment performed instructor here.
And then we can union those together, and instead of having a list with things of
different types, now I have a list of things with the same type. And we support
both of those approaches to allow authors to mm express the logic and the way
in the where that makes the most sense for their use case. If there are significant
number of subsequent references, it is typically better to construct a single table.
But if there are minimal subsequent references, then allowing unions with
multiple types prevents rewrite.

Okay. An example of intersect and accept. So, these are the same that operators
in CQL that are in the SQL. And the translation is straightforward. It's the same
syntax. You just, for each reference, use a select star from assuming the
definition of a view that corresponds to that expression definition. The translation
is almost the same. But for this, select star from in front of the V name. And the
order of operations and the semantics of those operations are the same between
a SQL and CQL.

So, another example; you're using Let: local definitions. So, one of the constructs
or clauses within a CQL query is the Let clause. This allows you to introduce
expressions that are evaluated only within the context of the query. So, in this
case we're saying start with the initial population named qualifying encounter. Let
the first PCI be the first instance of a PCI procedure where the relevant period
starts on or after the hospital arrival time of that qualifying encounter, sorted by
the start of the relevant period. They've given me the most recent PCI related to
this qualifying encounter.

And then I can use this first PCI definition anywhere else in the query to talk
about that. And because it's part of the query, so where first PCI refers to the left
that was calculated for this iteration of the query. But then I can introduce
expressions and use those throughout the rest of the query.

So in a TSQl, the dialect that's used in Microsoft SQL server and Sybase and
MySQL has a flavor of it, there's an operation called Outer Apply and that is

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 11

effectively the same thing as a Let where you construct the content and then that
Outer Apply is available within the rest of the query. You're introducing,
effectively, a result that's XS on each iteration. So the first PCI for this qualifying
encounter, and that allows you to translate that example.

So, hopefully that is helpful. That was just a kind of list of lots of different types of
CQL expressions and what they're equivalent expression in SQL looks like. If
page, it's just a list of resources that can help them be available. Obviously a link
to the specification. This is the product brief for CQL on HL seven, the new CQI
resource center. There are a lots of excellent resources available there, as well
as ongoing education and outreach seminars and events. There are educational
resources for past events that had been provided.

There's a CQL space that digs into the current end specifications used for
program measures and then there's a CQL formatting in usage Wiki. There's a lot
of content here on specifically some guidance around end patterns for usage of
CQL. There's a get hub tools repository, CQ framework, clinical quality language,
in general. The CQ framework organization has several related repositories,
tooling and otherwise around use of CQL and then there is the measure offering
tool that uses CQL and QDM to produce the CQM specifications, and there's a
bonding testing tool where you can use that environment to test ECQMS
produced through the measure authoring tool. And have you have issues, please
do submit tickets for CQL through that CQL IT project on the UNC project
tracking site. Also included at the end of the deck, several slides that just talk
about different potential approaches to implementation given different
implementation environments. And with that, I will turn it back over to Lisa.

Lisa Anderson: Thank you Bryn. We will now move into the live Q and A segment for the
session. To ask a question, please type your question and slide reference
number in the question pane. We will answer as many questions as possible in
the remaining time. All questions submitted will be addressed in a follow-up Q
and a document that will be posted on the Pioneers in Quality portal.

Our first question, Bryn, comes from Edgardo at Infomatica. 'Could you tell me
where we can take CQL training?' We did already provide in the chat box a link to
the ECQ resource center as a good place to start with some introductory
information for CQL, but he did have a follow-up question to see is there any sort
of physical training or online training that he could take?

Bryn Rhodes: So, HL7 does offer a CQL class at their working group meetings. You know, it's a
session you can sign up for.

Don't know if they do that other than at the work group meetings. Okay. We could
certainly, I would suggest that that's something that there's interest in.

Lisa Anderson: Thanks, Bryn. Our next question comes from Pam at Community Healthcare
System. "How do you interpret patients on observation in the hospital? Are
observation patients be considered inpatient encounters since they are hospital
admission? The ops patients later become inpatient at discharge and they're
having some issues with timing," and I'm kind of truncating that question. We did
answer that, Pam, in your response already, but you are correct. In the 2019
reporting year for our ECQMs, observation was not accounted for. However, if

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 12

you look at the specifications for the 2020 reporting year, you will see that that
should be resolved. We did implement a new global dot hospitalization with
observation function that helps tie together ED, observation, and inpatient
encounters. So, hopefully that helps you out. All right. Our next question is for
Brynn. My name's got cut off. One second. And this comes from Dan at the VA.
"Are there any open source CQL to SQL transpilers based on ANSI sequel,
which can be customized to meet platform's specific needs?"

Bryn Rhodes: Yes. So, I'm going to go back to slide 29. This link is exactly that. So, like I said,
it's a little bit out of date, but bringing it up to the latest job specification would be
a fairly light list. And the SQL a representation, it's not fancy. What it is is
something that we call common SQL, which is the lowest common denominator
of all known SQL dialects, which was a challenge just to decipher and come up
with. But what it puts out would be ANSI SQL. I just don't want to say that it's
ANSI SQL because it's based on survey of all known dialects and the lowest
common denominator of all of those. But then, within that there are extensions
for like if you're translating to Oracle, there are Oracle extensions. If you're
translating to IBM DB2, you know, dialect-specific extensions that can be used to
support that.

Like I said, it was used in the ELM pilots but the base structure is there and it's
functional, yeah.

Lisa Anderson: Thanks, Bryn. On slide 37, there's a question about that slide specifically. Let's
go to that. Okay, on the timing relationship. Sorry, my screen [inaudible
00:01:27]. So the DURING keyword acts similarly to the BETWEEN function in
SQL, and the INCLUDES works like the IN function in SQL. Does SQL have the
ability to do NOT IN or does it have a NOT IN equivalent? I'm guessing
something like an EXCLUDE?

Bryn Rhodes; So, there's not a NOT IN. What you say is NOT in, if that makes sense. So SQL
allows you to put the NOT modifier in front of several of the keywords. CQL
doesn't do that. Instead we just have a generic NOT operator and so any
expression that results in a Boolean you can do a NOT. So to say, "X NOT IN Y"
in CQL you say, "NOT X IN Y", if that makes sense. The DURING question, so
DURING does act like a BETWEEN if the left side of the DURING is a date. The
DURING can also be used with intervals, so relevant period during measurement
period and then it's actually an interval operation where you're saying that the left
interval is entirely included in the right interval. And then, NOT INs and
EXCLUDEs, like, for each operation for intervals there's a complement and so
you can say DURING and you can also say INCLUDES and those are
complementary operations where relevant period includes measurement period
would mean the opposite of relevant period during measurement period. Does
that help?

Lisa Anderson: Thanks, Bryn. Our next question comes from Lynne at Meditech, and she's
saying, "We retrieved the qdm-modelinfo.xml from Github" and she provided a
link to Github, and she says, "We used the qdm-modelinfo.xml to produce SQL
files. We have a couple questions about that. One, who is the author? We cannot
find it on the [eCQI 00:03:53] site, only guidance. And two, is there a schema
against which it is validated other than W3C standard? For example, we infer a

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 13

class info element contains a negation rationale element. It has two profile info
child elements, positive and negative, but cannot point to that rule in an XSV.

Bryn Rhodes: Yes. So, in the same repository that you downloaded the modelinfo, there's
actually a schema that that modelinfo is used to generate. And the ELM that
comes out of the translator written against any given modelinfo should be
schema valid against that schema, or at least operate against data that is
schema valid against that schema. Does that make sense? And as far as who is
the author, as part of building the CQL ELM translator and the reference tooling
that supports the clinical quality language specification, we build out modelinfo
that is based on the version updates of QDM. So whenever QDM releases a new
version, we create a new XSD for that QDM and then updated the modelinfo
based on that XSD.

Lisa Anderson: Thanks, Bryn. So our next question comes from Brian at Campbell County, it
keeps cutting off. Somewhere. Help? On slide 38, when it states, "One day after
day of", does that start at 00:00 midnight? Or does it count back from a specific
time? So we are going back to slide 38, here we go.

Bryn Rhodes: So the way this actually results in the SQL, sorry, the way this actually comes out
in the ELM is that this is the end of the relevant period is between start of the
qualifying relevant period and the start of the qualifying relevant period plus one
day, where those comparisons are actually performed at the day. And so it's not
that it counts backward from zero, it's that the comparisons actually ignore the
time component.

Lisa Anderson: Great, thanks, Bryn. Our next question comes from Diana at Kettering Health.
When these CQL statements interpret into SQL, do they take performance into
consideration? In other words, would they generate a good execution plan?

Bryn Rhodes: So the short answer is yes. The longer answer is, the CQL retrieve is specifically
designed to correspond to the most likely indexes in our relational representation
of that content. The fact that the SQL that would be the result of the output has
filters on the indexed access path to that data means that the SQL compiler in
your target environment will take advantage of those access paths as part of its
query optimization planning for executing a query. Does that help?

Lisa Anderson: Great. Thanks, Bryn. Our next question comes from Edgardo at Infomedica. Will
the measures continue to be tied to a specific version for the future?

Bryn Rhodes: So, just like QDM updates, until CQL goes normative we continue to improve the
specification and incorporate feedback from implementation. We are targeting a
normative ballot sometime next year. But until the specification goes normative,
it's likely that the specifications will continue to use the most current version.
That's just a likely and that's just my opinion. If that makes sense.

Lisa Anderson: Thanks, Bryn. All right, our next question comes from Aetna. What is the
significance of value sets file for each measure? I see value sets file is a must
while executing measure using QDM-based execution engine whereas FHIR-
based execution engine does not need value sets for each measure. So, want to
understand the significance of value sets file.

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 14

Bryn Rhodes: I need clarification on that. I'm not sure what that question is referring to as far as
value sets file. We don't have anything in the ECQM packages that's called value
sets file. I wonder if there's a secondary processing step that's happening or
something? I'm not sure what that's referring to, I am sorry.

Lisa Anderson: Great. Thanks, Bryn. So whoever put that question in, if you could clarify that in
an additional question we'll get to it at the end. Next question comes from
Edgardo at Infomedica again. It says, "The 1.3.10 release of the CQL to ELM
translator has an issue that results in an incorrect translation error when
attempting to use any of the CONVERTS TO () operators. When is the correction
going to be available?

Bryn Rhodes: There is currently a 1.3.17 release that I'm fairly sure addresses that issue but I
can double-check. There's also 1.4.6 release.

Lisa Anderson: Great. Thanks, Bryn. Our next question comes from Mark. Is it recommended to
evaluate a CQM for one client at a time? It seems like that's what the SQL
example showed.

Bryn Rhodes: So you can do that either way. I've seen approaches where you would take a
pipelined approach and evaluate for each patient individually. But I've also seen
the approach where you could take the SQL and translate it to a population-level
query. In doing so, you would have to make sure that you included filters for all
the relationships within the query. So when you move from a patient-specific
rendering of that SQL, to the population-level rendering, you have to make sure
that if it talks about medications you're linking it to the patient. But it's certainly
possible to express the SQL in terms of the population even though it's
expressed patient-specific within the eCQM. And then if you have a population-
level expression, obviously your query planner and your query optimization
strategy can take that into account, potentially get significantly better
performance by using a population-level approach. So both approaches are
supported.

Lisa Anderson: Great. Thanks, Bryn. Our next question comes from Prime Clinical Systems. How
would you implement FIRST and LAST, implemented in a neat way in SQL?
Specifically in Oracle?

Bryn Rhodes: So Oracle, you would probably use ROWNUM. Yeah, that would work. You
would use ROWNUM in Oracle. In Microsoft SQL Server you'd use a TOP, you
know, SELECT TOP * and then in Oracle, if I remember right, that would be a
ROWNUM.

Lisa Anderson: Great. Thanks, Bryn. Our next question comes from Deb at Meditech. For the
latest CQL release, SQ3, is there an area to download a PDF of the
specifications along with the ELM schema definitions?

Bryn Rhodes: So part of what we did between the SQ2 and SQ3 release of CQL was to make it
a web-based specification, so there's not a single PDF that contains all of the
CQL specification. But you can download the entire specification as a local
website, if you want to have a local copy of it. On the Downloads page there's a
link for the entire specification.

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 15

Lisa Anderson: Great, thank you. Our next few questions come in from David at CVS/Aetna. The
model type example in ELM's slide showed retrievable = TRUE. Can you give an
example of a use case were something not retrievable and why it would need to
be marked as such?

Bryn Rhodes: Yes. So for example, in the FHIR model, the patient has elements that are of
type ADDRESS. So we needed a way to talk about the ADDRESS type, but
there is no ADDRESS table. Addresses are just data types that provide reuse of
structure within the definitions but don't actually correspond to anything persisted
on its own. So in those cases we use a non-retrievable data type or class type to
define that structure.

As far as an example of context other than patient and where that might be
used? Let's say you want to run a measure on the number of beds in a hospital.
Your context would be either location or organization, something like that, and
your criteria would be expressed in terms of the hospital rather than in terms of
any given patient. Maybe you're interested in number of staff at a clinic, those
types of measures.

And then for translating CQL to ELM, where are these translators and how do we
access them? So on the Resources page, let me go back to that slide. On the
Resources page, the Github tool's repository, Clinical Quality Language, the CQL
to ELM translator is also available on Maven, if you're using a Java environment
you can just include those and get them directly from the Maven central
repository. Is that all of the questions there? Yes.

Lisa Anderson: Yes, thank you. Our next question comes from Brian at Health Catalyst, and
says, "Why not simply develop the measures in SQL? This seems overly
complex for little value."

Bryn Rhodes: So SQL does not have the operation that we need for the most common use
cases. The interval operations is the first thing, and the use of quantity as a first
class element, ratios as a first class element, and the ability to reference
terminology. So when we first set out on this road, that was one of the things we
considered very strongly, was why not just use SQL? That was the reason. Once
you take those things into account and you actually write SQL that enables the
kinds of queries you're using in measure development and completely specify
that, the SQL is much more involved than the CQL. There's a lot to the use of
clinically focused elements that SQL just doesn't support.

Lisa Anderson: Great, thank you. Our next question comes from Greg at Pro Healthcare. "I was a
bit late to start so I apologize if this was covered. But is the CQL version intended
to replace the QRD version for both TJC and CMS?"

Bryn Rhodes: I'm not sure I understand the question. [crosstalk 00:18:46]

Lisa Anderson: Yeah so I think they're asking is the CQL version the measure replacing the
QRDA?

Bryn Rhodes: Well, I mean, we use QRDA to report CQL measures, so QRDA was updated
alongside HQMF to able to use CQL-based measures to report. But it's not

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 16

intended to replace QRDA because it's not the same kind of specification. CQL is
a query language specification, QRDA is a document reporting specification.

Lisa Anderson: Great. Thanks, Bryn. Our next question comes from BWH. Is OVERLAPS
equivalent to DURING?

Bryn Rhodes: No. So OVERLAPS means, is there any overlap between interval A and interval
B, where DURING means, is the interval entirely contained within interval B.

Lisa Anderson: Great. Thanks, Bryn. Our next question comes from Menish at IVM. On slide 38,
he has a question about the time phrases with offsets. Where in CQL does it
explain what time difference method to use for items provided in three and four
on the slide. There has been a lot of confusion with timing calculations since it
seems there may be several ways to calculate time difference, each yielding
different results. It goes on to say he's created several GR tickets and been
provided guidance which conflicts with Appendix H of HL7 CQL specification, and
according to this example one on slide 38, he thinks item three will be TRUE
even if labor.authordatetime is 24 hours and 59 minutes.

Bryn Rhodes: So I would need to dig into that specifically. Within the SQL specification there's a
chapter on translation symantecs that talks about how timing phrases are
converted into the canonical ELM representations, how those timing phrases are
represented. And then there are the timing and calculation examples that he's
referring to in Appendix H. So you're seeing conflicting results there.

Lisa Anderson: Okay, so we can follow up with that in the Q&A that we do later after he's
reviewed it further. And the next question comes from GC Winters at Conduit. In
the old HQMF framework, the measure representation could support proportion,
interval and statistical measures. What capability is in, or will be in, I think it's
CQL to incorporate statistical functionality.

Bryn Rhodes: So currently CQL defines a full complement of statistics operators, the same that
you would generally find in any base implementation of SQL. So MIN, MAX,
standard deviations, variants, those kinds of basic statistics operators. In
addition, the [inaudible 00:22:40] specification does support the inclusion of
external, so you can define an operation that you're bringing in an external library
to provide the implementation for. So in short, we support already more than the
HQMF framework supported, and with the potential to add additional functionality
if it's needed.

Lisa Anderson: Great. Thanks, Bryn. We are running close to session end time. Any questions
unanswered today will be addressed in a follow-up Q&A document. Oop, it didn't
change. I'm sorry, there we go.

A few closing remarks before we end the session. As a reminder, the slides are
available for download now. Please visit the Expert to Expert landing page which
includes presentation replays, slide decks and Q&A's for all webinars in the
series. Although this is the last scheduled Expert to Expert webinar for 2019, we
are launching the 2019 Proven Practices webinar series starting in August. This
series highlights solutions and tips from expert Proven Practice contributors for
peer-to-peer learning regarding eCQM utilization for performance improvement.
Registration is now open for sessions on August 27, September 12, and

Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert
Webinar Series

Technical Implementation of the Clinical Quality Language (CQL)

July 23, 2019

 17

September 24. You can click on the link in the slides, or visit the webinar series
landing page at the provided link to register for all three of these sessions.

A survey link will be emailed to participants tomorrow. If you qualify for CE
credits, complete the survey and include the email to which you would like your
certificate sent. When the evaluation closes two weeks from today, all those
eligible for CEs will receive an email with a link to a PDF certificate.

Thank you, Bryn, for presenting today, and thanks to all of you who listened in.
Have a great day.

	Pioneers in Quality Electronic Clinical Quality Measure (eCQM) Expert to Expert Webinar Series Technical Implementation of the Clinical Quality Language (CQL)

Accessibility Report

		Filename:

		Jul23_CQL_Technical_Implementation_Webinar_Transcript.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

