
ADE Prevention and Monitoring: Warfarin Time in Therapeutic Range
Supplemental SQL Logic Reference

(CMS179, version 4, updated 4/3/2015)

ADE Prevention and Monitoring

The purpose of this document is to support the implementation of the clinical quality measure “ADE
Prevention and Monitoring: Warfarin Time in Therapeutic Range” by providing an example of the
structured query language (SQL) that underwent field testing. The defined SQL logic below provides a full
view of its content, but the specifications supplied in the header section of the Health Quality Measure
Format (HQMF) of the clinical quality measure should be the primary basis for implementation of the
measure. The HQMF files for this clinical quality measure contain instructions in the Definition and
Guidance section which indicate the ultimate purpose of the SQL logic defined in this document. Since the
SQL implementation may vary depending on an EHR system’s table structure and data definitions, EHR
system programmers and vendors should replace the field names and table names as needed based on
their knowledge of their EHR system and its requirements in order to fulfill the measure’s intent.

TTR percentage will be calculated for each patient that meets the criteria for the Measure Population. The
average of these values is reported as the Measure Observation.

 Percent of Time in Therapeutic Range (TTR)

The initial part of the SQL logic calculates the percent TTR for each patient (PctTTR in the temporary table
#PatientTTR). Percent of time in therapeutic range (TTR) is calculated within the logic originally developed
by the Veterans Affairs (VA).

Warfarin time in therapeutic range is the percentage of time in which patients with atrial fibrillation or
flutter who are on chronic warfarin therapy have INR test results within the therapeutic range (2.0 - 3.0)
during the measurement period.

The following filters are applied to the INR results prior to the calculation of TTR for each patient:
1) INR value closest to 2.5 when there are more than one INR result on a single date
2) INR values greater than 10 will be replaced with an INR value of 10
3) INR values less than 0.8 are ignored and eliminated from the final TTR calculation for each

patient
The logic keeps track of the number of valid INR intervals for each patient. A Valid INR Interval is defined
as a pair of INR start dates that are less than or equal to 56 days apart. Patients without 2 such intervals
will be excluded from the calculation of the providers’ Average PctTTR later on.

Identifiers for the patient’s provider and the practice site are also included. The identifier for the provider
that is ultimately responsible for warfarin management should be used. The identifier for the practice site
at which the patient’s warfarin is managed should be used.

1

USE [Datamart_Staging]
GO
/****** Object: StoredProcedure [dbo].[ADE_TTRCalculationWithFilters]
Script Date: 04/10/2013 09:01:41 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

ALTER PROCEDURE [dbo].[ADE_TTRCalculationWithFilters]

AS

SET NOCOUNT ON;

SELECT
 Patient_ID,
 Practice_Site,
 provider_ID,
 [QDM_Attribute Result Value],
 ABS(2.5 - [QDM_Attribute Result Value])AS ValDiff,
 DATEADD(DAY,0, DATEDIFF(DAY, 0,[Start DateTime])) AS [Start
DateTime]
INTO
 #LabResults1
FROM dbo.ADE_LabResults a JOIN
 ADE_VocabularyDictionary b ON a.DataElement_Code = b.Code
WHERE
 b.[QDM Category] = 'Laboratory Test, Result' AND b.[Value Set
Name] = 'INR'
ORDER BY patient_ID, [Start DateTime]
SELECT Patient_ID,
 [Start DateTime],
 MIN(ValDiff) AS ValDiff
INTO #LabResults2
FROM #LabResults1
GROUP BY Patient_ID,
 [Start DateTime]

SELECT a.Patient_ID,
 Practice_Site,
 Provider_ID,
 a.[Start DateTime],
CASE WHEN a.[QDM_Attribute Result Value] >10 THEN 10 ELSE
a.[QDM_Attribute Result Value] END AS [QDM_Attribute Result Value]

INTO #FilteredLabResults
FROM #LabResults1 a
JOIN #LabResults2 b ON a.Patient_ID = b.Patient_ID
AND a.[Start DateTime] = b.[Start DateTime]
AND a.ValDiff = b.ValDiff
WHERE a.[QDM_Attribute Result Value] >= 0.8

2

DROP TABLE #LabResults2
DROP TABLE #LabResults1

SELECT
 Patient_ID,
 Practice_Site,
 Provider_ID,
 [QDM_Attribute Result Value],
 [Start datetime],
 RANK () OVER (PARTITION BY Patient_ID ORDER BY [Start
datetime]) AS INROrder
INTO
 #OrderedINRList
FROM #FilteredLabResults

ORDER BY
 [Start datetime]

DECLARE @INRLowerBound AS DECIMAL(20,4)
SET @INRLowerBound = 2.0
DECLARE @INRUpperBound AS DECIMAL(20,4)
SET @INRUpperBound = 3.0

SELECT

Patient_ID,
Practice_Site,
Provider_ID,
INROrder,
INR1Date,
INR1Result,
TimeBetweenSamples,
INRDiff,
INRShiftKPI2,
IsValidInterval,

CASE
 WHEN
 INRShiftKPI2 = 0.0 AND (INR1Result >= @INRLowerBound AND
INR1Result <= @INRUpperBound
 AND INR2Result >= @INRLowerBound AND INR2Result <=
@INRUpperBound)THEN CAST(TimeBetweenSamples AS DECIMAL)
 ELSE isnull(cast(TimeBetweenSamples AS DECIMAL) * ABS((INRShiftKPI2
/ NULLIF(INRDiff,0))),0)
 END AS TherapeuticDaysKPI2

INTO
 #TherapeuticDays
FROM
(
 SELECT
 inr1.Patient_ID,
 inr1.Practice_Site,
 inr1.Provider_ID,
 inr1.INROrder,

3

 inr1.[Start datetime] AS INR1Date,
 inr1.[QDM_Attribute Result Value] AS INR1Result,
 inr2.[Start datetime] AS INR2Date,
 inr2.[QDM_Attribute Result Value] AS INR2Result,
 DATEDIFF(DAY,inr1.[Start datetime],inr2.[Start datetime]) AS
TimeBetweenSamples,
 inr2.[QDM_Attribute Result Value] - inr1.[QDM_Attribute
Result Value] AS INRDiff,
 dbo.DifferenceWithinRange_v2 (inr1.[QDM_Attribute Result
Value],inr2.[QDM_Attribute Result Value],@INRLowerBound,@INRUpperBound)
AS INRShiftKPI2,
 CASE
 WHEN (ABS(DATEDIFF(DAY,inr1.[Start datetime],inr2.[Start
datetime])) <= 56)
 THEN 1
 ELSE 0
 END AS IsValidInterval
 FROM
 #OrderedINRList inr1
 INNER JOIN #OrderedINRList inr2
 ON inr2.INROrder = inr1.INROrder + 1 AND inr1.Patient_ID =
inr2.Patient_ID
 WHERE
 inr2.[Start datetime] >= inr1.[Start datetime]
) x
ORDER BY
 INR1Date
SELECT
 Patient_ID ,
 Practice_Site,
 Provider_ID,
 ROUND(100 * (SUM(TherapeuticDaysKPI2) / SUM(TimeBetweenSamples)),2)
AS PctTTR,
 SUM(IsValidInterval) as NumValidIntervals
INTO
 #PatientTTR
FROM
 #TherapeuticDays

GROUP BY Patient_ID,Practice_Site, Provider_ID
ORDER BY Patient_ID

DROP TABLE #FilteredLabResults
DROP TABLE #TherapeuticDays
DROP TABLE #OrderedINRList

4

Cumulative Medication Duration

 Cumulative medication duration (CMD) includes the total number of calendar days the patient is actively

using Warfarin. The SQL logic below does not include the specific medication codes that are used to
identify each individual warfarin prescription for a patient. In the HQMF file for the clinical quality
measure, the value set for the data element Medication, Active “Warfarin” contains the RxNorm codes
that should be used to identify patients on warfarin therapy. The HQMF file for the clinical quality
measure also defines cumulative medication duration >=180 days.
For testing purposes, the measurement start date was set to 1/1/2011, and the look-back period for an
active medication of warfarin is 200 days prior to measurement start date. Depending on how cumulative
medication duration is captured in the site’s EHR, SQL logic may need to be modified in order to include
this particular data set.

DECLARE @MeasurementStartDate DATETIME
DECLARE @LookBackDate DATETIME

SET @MeasurementStartDate = '1/1/2011'
SET @LookBackDate = @MeasurementStartDate - 200

SELECT DISTINCT a.Patient_ID,
 a.Practice_Site,
 a.Provider_ID,
 a.PctTTR,
 B.[Start DateTime],
 B.[Stop DateTime],
 DATEDIFF(DAY,B.[Start DateTime] , B.[Stop
DateTime]) AS DateDifference,
 CASE WHEN b.[Start DateTime] < @LookBackDate THEN
DATEDIFF(DAY,B.[Start DateTime] ,
 B.[Stop DateTime]) -
DATEDIFF(DAY,B.[Start DateTime] , @LookBackDate)
 WHEN b.[Stop DateTime] >=
@MeasurementStartDate THEN DATEDIFF(DAY,B.[Start DateTime] ,
 B.[Stop DateTime]) -
DATEDIFF(DAY,@MeasurementStartDate,B.[Stop DateTime])
 ELSE DATEDIFF(DAY,B.[Start DateTime] , B.[Stop
DateTime]) END AS ActualUsageIn200DayPeriod
INTO #PatientTTRWithMedDates
FROM #PatientTTR A
 JOIN ADE_Medications B ON A.Patient_ID = B.Patient_ID
 JOIN ADE_VocabularyDictionary C ON B.DataElement_Code =
C.Code
WHERE B.[Start DateTime] IS NOT NULL
 AND (b.[Start DateTime] >= @LookBackDate or
b.[Stop DateTime] >= @LookBackDate)
 AND (b.[Start DateTime] <= @MeasurementStartDate)
 AND C.[QDM Category] = 'Medication, Active'

SELECT Patient_ID,
 Practice_Site,
 Provider_ID,

5

 PctTTR,
 SUM(ActualUsageIn200DayPeriod) AS
CumlativeMedicationUsage
INTO #PatientTTRWithMin180DaysMeds
FROM #PatientTTRWithMedDates
GROUP BY Patient_ID,Practice_Site, Provider_ID,PctTTR
HAVING SUM(ActualUsageIn200DayPeriod) >=180
ORDER BY Patient_ID,Practice_Site, Provider_ID

Age Requirements

The logic in this section contains a filter that states the patient must be 18 years or older during the
measurement period.

SELECT a.Patient_id,
 b.BirthDate,
 a.Practice_Site,
 a.Provider_ID,
 a.PctTTR
INTO #PatientTTRAbove18WithMin180DaysMeds
FROM #PatientTTRWithMin180DaysMeds a
JOIN ADE_Patients B ON a.Patient_ID = b.Patient_ID
WHERE DATEDIFF(YEAR,b.birthdate,@MeasurementStartDate) >=18
ORDER BY A.Practice_Site

Active Diagnosis (including exclusion criteria)

Atrial Fibrillation Diagnosis
Patients who have an active diagnosis of atrial fibrillation or atrial flutter that started and did not end
before the first day of the measurement period must be included in this measure.

Valvular Heart Disease
If patients contain an active diagnosis of valvular heart disease that started and did not end before the
start of the measurement period, they should be excluded from the data set.

SELECT a.Patient_Id,
 a.BirthDate,
 a.Practice_Site,
 a.Provider_ID,
 a.PctTTR
INTO #PatientTTRAbove18WithMin180DaysMedsAndDiagnosis
FROM #PatientTTRAbove18WithMin180DaysMeds a JOIN
 ADE_Diagnosis b ON a.Patient_id =B.Patient_ID
WHERE
 b.[start DateTime] < @MeasurementStartDate
 AND b.[Stop DateTime] > @MeasurementStartDate

6

 AND b.DataElement_Code IN (SELECT CODE FROM
ADE_VocabularyDictionary WHERE [QDM Category] = 'Diagnosis, Active' AND
([Value Set Name] = 'Atrial Fibrillation/Flutter'))
 AND b.Patient_id NOT IN (SELECT Patient_Id FROM
ADE_Diagnosis where (DataElement_Code IN (SELECT CODE FROM
ADE_VocabularyDictionary WHERE [QDM Category] = 'Diagnosis, Active' AND
([Value Set Name] = 'Valvular Heart Disease'))))
 AND (b.[start DateTime] <= @MeasurementStartDate AND b.[Stop
DateTime] >= @MeasurementStartDate)

ORDER BY A.Patient_ID

DROP TABLE #PatientTTRAbove18WithMin180DaysMeds

Valid INR Intervals

 The SQL logic below calculates patients who have at least two valid INR intervals during the measurement
period. A valid INR interval is defined as a pair of INR results that are less than or equal to 56 days apart. If
multiple INR results are present on the same day, only one is noted for the TTR calculation (filter
mentioned in Percent TTR section).

SELECT A.Patient_Id,
 A.BirthDate,
 A.Practice_Site,
 A.Provider_ID,
 A.PctTTR
INTO #PatientsWithTwoValidIntervals
FROM #PatientTTRAbove18WithMin180DaysMedsAndDiagnosis A
JOIN #PatientTTR B ON A.Patient_ID = B.Patient_ID
WHERE
 B.NumValidIntervals >= 2

Encounter Data

The logic below includes patients that have at least one outpatient visit during the measurement period.
Patient encounter codes and definitions are site specific and must capture the relative encounters needed
to meet the criteria of the measure.

SELECT a.Patient_Id,
 a.BirthDate,
 a.Practice_Site,
 a.Provider_ID,
 a.PctTTR
INTO #PatientTTRWithDaysAgeDiagnosisEncounter
FROM #PatientsWithTwoValidIntervals a
JOIN ADE_Encounters B ON A.Patient_Id = b.Patient_ID

7

JOIN ADE_VocabularyDictionary C ON B.DataElement_Code = C.Code
WHERE
 (C.[Value Set Name] = 'Face-to-Face Interaction' OR
C.[Value Set Name] = 'Office Visit')
 AND b.[start datetime] >= @MeasurementStartDate
ORDER BY Practice_site

Average TTR by Provider and Practice

In order to calculate an AverageTTR by provider, patients who meet all the criteria above will be grouped
by unique provider identifier. The provider IDs should be assigned by the site (e.g., actual provider
identifier). The identifier for the provider that is ultimately responsible for warfarin management should
be used.
Note: the logic also includes the calculation of AverageTTR by practice site (e.g., an anticoagulation clinic).
This is for reference purposes only and is not required for the quality measure or its reporting. Ideally, the
identifier for the practice site at which the patient’s warfarin is managed should be used.

SELECT Practice_Site,AVG(PctTTR) AS AvgTTRByPracticeSite
FROM #PatientTTRWithDaysAgeDiagnosisEncounter
GROUP BY Practice_Site

SELECT Provider_ID,AVG(PctTTR) AS AvgTTRByProvider
FROM #PatientTTRWithDaysAgeDiagnosisEncounter
GROUP BY Provider_ID

8

FUNCTION [dbo].[DifferenceWithinRange_v2]

The following function is required for the calculation of TTR. This function calculates the difference
between two numbers that falls within a specified range. For example, given a range of 2.0 to 3.0, the
difference between 1.5 and 2.5 within this range is 0.5. The function is intended for use in calculating
differences between INR values within the context of the Rosendaal method of calculating TTR (time in
therapeutic range), which requires the proportion of an INR difference from one sample to the next that
falls within the therapeutic range.

USE [V01DW]

GO

/****** Object: UserDefinedFunction [dbo].[DifferenceWithinRange_v2]
Script Date: 01/03/2013 13:51:42 ******/
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE FUNCTION [dbo].[DifferenceWithinRange_v2]
(--inputs:
 @Val1 as decimal(10,5),
 @Val2 as decimal(10,5),
 @LowerBound as decimal(10,5),
 @UpperBound as decimal(10,5)
)
RETURNS decimal(10,5)
AS
BEGIN
 -- Declare the return variable here
 DECLARE @result as decimal(10,5)

 set @result =
 (
 SELECT
 case
 -- inr values are both outside the range in the same direction
 when @Val1 > @UpperBound and @Val2 > @UpperBound then null
 when @Val1 < @LowerBound and @Val2 < @LowerBound then null
 -- inr values are straddling the range
 when (@Val1 > @UpperBound and @Val2 < @LowerBound)
 OR (@Val2 > @UpperBound and @Val1 < @LowerBound)

 then @UpperBound - @LowerBound
 -- both inr values are within the range
 when @Val1 between @LowerBound and @UpperBound

9

 and @Val2 between @LowerBound and @UpperBound
 then (@Val2 - @Val1)
 -- one value is in the range and one is outside
 when @Val1 > @Val2
 and @Val1 > @UpperBound
 then (@UpperBound - @Val2)*(-1) --/ (@Val1 - @Val2)
 when @Val2 > @Val1
 and @Val2 > @UpperBound
 then (@UpperBound - @Val1)*(-1) --/ (@Val2 - @Val2)

 when @Val1 > @Val2
 and @Val2 < @LowerBound
 then (@Val1 - @LowerBound)*(-1)
 when @Val2 > @Val1
 and @Val1 < @LowerBound
 then (@Val2 - @LowerBound)*(-1)
 else null
 end
)

 -- Return the result of the function
 RETURN @result

END
GO

10

